Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

h^{2}=\frac{25}{16}
Divide both sides by 16.
h^{2}-\frac{25}{16}=0
Subtract \frac{25}{16} from both sides.
16h^{2}-25=0
Multiply both sides by 16.
\left(4h-5\right)\left(4h+5\right)=0
Consider 16h^{2}-25. Rewrite 16h^{2}-25 as \left(4h\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=\frac{5}{4} h=-\frac{5}{4}
To find equation solutions, solve 4h-5=0 and 4h+5=0.
h^{2}=\frac{25}{16}
Divide both sides by 16.
h=\frac{5}{4} h=-\frac{5}{4}
Take the square root of both sides of the equation.
h^{2}=\frac{25}{16}
Divide both sides by 16.
h^{2}-\frac{25}{16}=0
Subtract \frac{25}{16} from both sides.
h=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{16}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{25}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\left(-\frac{25}{16}\right)}}{2}
Square 0.
h=\frac{0±\sqrt{\frac{25}{4}}}{2}
Multiply -4 times -\frac{25}{16}.
h=\frac{0±\frac{5}{2}}{2}
Take the square root of \frac{25}{4}.
h=\frac{5}{4}
Now solve the equation h=\frac{0±\frac{5}{2}}{2} when ± is plus.
h=-\frac{5}{4}
Now solve the equation h=\frac{0±\frac{5}{2}}{2} when ± is minus.
h=\frac{5}{4} h=-\frac{5}{4}
The equation is now solved.