Solve for a
a<\frac{1410}{7}
Share
Copied to clipboard
16a+3000-30a>180
Use the distributive property to multiply 30 by 100-a.
-14a+3000>180
Combine 16a and -30a to get -14a.
-14a>180-3000
Subtract 3000 from both sides.
-14a>-2820
Subtract 3000 from 180 to get -2820.
a<\frac{-2820}{-14}
Divide both sides by -14. Since -14 is negative, the inequality direction is changed.
a<\frac{1410}{7}
Reduce the fraction \frac{-2820}{-14} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}