Factor
\left(d-2\right)\left(d+2\right)\left(-d^{2}-4\right)
Evaluate
16-d^{4}
Share
Copied to clipboard
\left(4+d^{2}\right)\left(4-d^{2}\right)
Rewrite 16-d^{4} as 4^{2}-\left(-d^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(d^{2}+4\right)\left(-d^{2}+4\right)
Reorder the terms.
\left(2-d\right)\left(2+d\right)
Consider -d^{2}+4. Rewrite -d^{2}+4 as 2^{2}-d^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-d+2\right)\left(d+2\right)
Reorder the terms.
\left(-d+2\right)\left(d+2\right)\left(d^{2}+4\right)
Rewrite the complete factored expression. Polynomial d^{2}+4 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}