Solve for x
x=4
Graph
Share
Copied to clipboard
16-8x+x^{2}=0
Add x^{2} to both sides.
x^{2}-8x+16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-8 ab=16
To solve the equation, factor x^{2}-8x+16 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(x-4\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
\left(x-4\right)^{2}
Rewrite as a binomial square.
x=4
To find equation solution, solve x-4=0.
16-8x+x^{2}=0
Add x^{2} to both sides.
x^{2}-8x+16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-8 ab=1\times 16=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Rewrite x^{2}-8x+16 as \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Factor out x in the first and -4 in the second group.
\left(x-4\right)\left(x-4\right)
Factor out common term x-4 by using distributive property.
\left(x-4\right)^{2}
Rewrite as a binomial square.
x=4
To find equation solution, solve x-4=0.
16-8x+x^{2}=0
Add x^{2} to both sides.
x^{2}-8x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Multiply -4 times 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Add 64 to -64.
x=-\frac{-8}{2}
Take the square root of 0.
x=\frac{8}{2}
The opposite of -8 is 8.
x=4
Divide 8 by 2.
16-8x+x^{2}=0
Add x^{2} to both sides.
-8x+x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x^{2}-8x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-16+16
Square -4.
x^{2}-8x+16=0
Add -16 to 16.
\left(x-4\right)^{2}=0
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-4=0 x-4=0
Simplify.
x=4 x=4
Add 4 to both sides of the equation.
x=4
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}