Solve for x
x=3\sqrt{5}-4\approx 2.708203932
x=-3\sqrt{5}-4\approx -10.708203932
Graph
Share
Copied to clipboard
x^{2}\times 16-x\times 16+4=18x^{2}-54
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x,x^{2}.
x^{2}\times 16-x\times 16+4-18x^{2}=-54
Subtract 18x^{2} from both sides.
-2x^{2}-x\times 16+4=-54
Combine x^{2}\times 16 and -18x^{2} to get -2x^{2}.
-2x^{2}-x\times 16+4+54=0
Add 54 to both sides.
-2x^{2}-x\times 16+58=0
Add 4 and 54 to get 58.
-2x^{2}-16x+58=0
Multiply -1 and 16 to get -16.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-2\right)\times 58}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -16 for b, and 58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-2\right)\times 58}}{2\left(-2\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+8\times 58}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-16\right)±\sqrt{256+464}}{2\left(-2\right)}
Multiply 8 times 58.
x=\frac{-\left(-16\right)±\sqrt{720}}{2\left(-2\right)}
Add 256 to 464.
x=\frac{-\left(-16\right)±12\sqrt{5}}{2\left(-2\right)}
Take the square root of 720.
x=\frac{16±12\sqrt{5}}{2\left(-2\right)}
The opposite of -16 is 16.
x=\frac{16±12\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{12\sqrt{5}+16}{-4}
Now solve the equation x=\frac{16±12\sqrt{5}}{-4} when ± is plus. Add 16 to 12\sqrt{5}.
x=-3\sqrt{5}-4
Divide 16+12\sqrt{5} by -4.
x=\frac{16-12\sqrt{5}}{-4}
Now solve the equation x=\frac{16±12\sqrt{5}}{-4} when ± is minus. Subtract 12\sqrt{5} from 16.
x=3\sqrt{5}-4
Divide 16-12\sqrt{5} by -4.
x=-3\sqrt{5}-4 x=3\sqrt{5}-4
The equation is now solved.
x^{2}\times 16-x\times 16+4=18x^{2}-54
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x,x^{2}.
x^{2}\times 16-x\times 16+4-18x^{2}=-54
Subtract 18x^{2} from both sides.
-2x^{2}-x\times 16+4=-54
Combine x^{2}\times 16 and -18x^{2} to get -2x^{2}.
-2x^{2}-x\times 16=-54-4
Subtract 4 from both sides.
-2x^{2}-x\times 16=-58
Subtract 4 from -54 to get -58.
-2x^{2}-16x=-58
Multiply -1 and 16 to get -16.
\frac{-2x^{2}-16x}{-2}=-\frac{58}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{16}{-2}\right)x=-\frac{58}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+8x=-\frac{58}{-2}
Divide -16 by -2.
x^{2}+8x=29
Divide -58 by -2.
x^{2}+8x+4^{2}=29+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=29+16
Square 4.
x^{2}+8x+16=45
Add 29 to 16.
\left(x+4\right)^{2}=45
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
x+4=3\sqrt{5} x+4=-3\sqrt{5}
Simplify.
x=3\sqrt{5}-4 x=-3\sqrt{5}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}