Evaluate
16\left(y-5\right)\left(y+2\right)
Factor
16\left(y-5\right)\left(y+2\right)
Graph
Share
Copied to clipboard
16y^{2}-48y-160+0
Multiply -1 and 0 to get 0.
16y^{2}-48y-160
Add -160 and 0 to get -160.
16\left(y^{2}-3y-10\right)
Factor out 16.
a+b=-3 ab=1\left(-10\right)=-10
Consider y^{2}-3y-10. Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-10. To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-5 b=2
The solution is the pair that gives sum -3.
\left(y^{2}-5y\right)+\left(2y-10\right)
Rewrite y^{2}-3y-10 as \left(y^{2}-5y\right)+\left(2y-10\right).
y\left(y-5\right)+2\left(y-5\right)
Factor out y in the first and 2 in the second group.
\left(y-5\right)\left(y+2\right)
Factor out common term y-5 by using distributive property.
16\left(y-5\right)\left(y+2\right)
Rewrite the complete factored expression.
16y^{2}-48y-160=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 16\left(-160\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-48\right)±\sqrt{2304-4\times 16\left(-160\right)}}{2\times 16}
Square -48.
y=\frac{-\left(-48\right)±\sqrt{2304-64\left(-160\right)}}{2\times 16}
Multiply -4 times 16.
y=\frac{-\left(-48\right)±\sqrt{2304+10240}}{2\times 16}
Multiply -64 times -160.
y=\frac{-\left(-48\right)±\sqrt{12544}}{2\times 16}
Add 2304 to 10240.
y=\frac{-\left(-48\right)±112}{2\times 16}
Take the square root of 12544.
y=\frac{48±112}{2\times 16}
The opposite of -48 is 48.
y=\frac{48±112}{32}
Multiply 2 times 16.
y=\frac{160}{32}
Now solve the equation y=\frac{48±112}{32} when ± is plus. Add 48 to 112.
y=5
Divide 160 by 32.
y=-\frac{64}{32}
Now solve the equation y=\frac{48±112}{32} when ± is minus. Subtract 112 from 48.
y=-2
Divide -64 by 32.
16y^{2}-48y-160=16\left(y-5\right)\left(y-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -2 for x_{2}.
16y^{2}-48y-160=16\left(y-5\right)\left(y+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}