Solve for y
y=\frac{1+3\sqrt{6}i}{2}\approx 0.5+3.674234614i
y=\frac{-3\sqrt{6}i+1}{2}\approx 0.5-3.674234614i
Share
Copied to clipboard
16y^{2}-16y+220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 16\times 220}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -16 for b, and 220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 16\times 220}}{2\times 16}
Square -16.
y=\frac{-\left(-16\right)±\sqrt{256-64\times 220}}{2\times 16}
Multiply -4 times 16.
y=\frac{-\left(-16\right)±\sqrt{256-14080}}{2\times 16}
Multiply -64 times 220.
y=\frac{-\left(-16\right)±\sqrt{-13824}}{2\times 16}
Add 256 to -14080.
y=\frac{-\left(-16\right)±48\sqrt{6}i}{2\times 16}
Take the square root of -13824.
y=\frac{16±48\sqrt{6}i}{2\times 16}
The opposite of -16 is 16.
y=\frac{16±48\sqrt{6}i}{32}
Multiply 2 times 16.
y=\frac{16+48\sqrt{6}i}{32}
Now solve the equation y=\frac{16±48\sqrt{6}i}{32} when ± is plus. Add 16 to 48i\sqrt{6}.
y=\frac{1+3\sqrt{6}i}{2}
Divide 16+48i\sqrt{6} by 32.
y=\frac{-48\sqrt{6}i+16}{32}
Now solve the equation y=\frac{16±48\sqrt{6}i}{32} when ± is minus. Subtract 48i\sqrt{6} from 16.
y=\frac{-3\sqrt{6}i+1}{2}
Divide 16-48i\sqrt{6} by 32.
y=\frac{1+3\sqrt{6}i}{2} y=\frac{-3\sqrt{6}i+1}{2}
The equation is now solved.
16y^{2}-16y+220=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16y^{2}-16y+220-220=-220
Subtract 220 from both sides of the equation.
16y^{2}-16y=-220
Subtracting 220 from itself leaves 0.
\frac{16y^{2}-16y}{16}=-\frac{220}{16}
Divide both sides by 16.
y^{2}+\left(-\frac{16}{16}\right)y=-\frac{220}{16}
Dividing by 16 undoes the multiplication by 16.
y^{2}-y=-\frac{220}{16}
Divide -16 by 16.
y^{2}-y=-\frac{55}{4}
Reduce the fraction \frac{-220}{16} to lowest terms by extracting and canceling out 4.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-\frac{55}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-y+\frac{1}{4}=\frac{-55+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-y+\frac{1}{4}=-\frac{27}{2}
Add -\frac{55}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{2}\right)^{2}=-\frac{27}{2}
Factor y^{2}-y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{27}{2}}
Take the square root of both sides of the equation.
y-\frac{1}{2}=\frac{3\sqrt{6}i}{2} y-\frac{1}{2}=-\frac{3\sqrt{6}i}{2}
Simplify.
y=\frac{1+3\sqrt{6}i}{2} y=\frac{-3\sqrt{6}i+1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}