Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-64x-89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 16\left(-89\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -64 for b, and -89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 16\left(-89\right)}}{2\times 16}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-64\left(-89\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-64\right)±\sqrt{4096+5696}}{2\times 16}
Multiply -64 times -89.
x=\frac{-\left(-64\right)±\sqrt{9792}}{2\times 16}
Add 4096 to 5696.
x=\frac{-\left(-64\right)±24\sqrt{17}}{2\times 16}
Take the square root of 9792.
x=\frac{64±24\sqrt{17}}{2\times 16}
The opposite of -64 is 64.
x=\frac{64±24\sqrt{17}}{32}
Multiply 2 times 16.
x=\frac{24\sqrt{17}+64}{32}
Now solve the equation x=\frac{64±24\sqrt{17}}{32} when ± is plus. Add 64 to 24\sqrt{17}.
x=\frac{3\sqrt{17}}{4}+2
Divide 64+24\sqrt{17} by 32.
x=\frac{64-24\sqrt{17}}{32}
Now solve the equation x=\frac{64±24\sqrt{17}}{32} when ± is minus. Subtract 24\sqrt{17} from 64.
x=-\frac{3\sqrt{17}}{4}+2
Divide 64-24\sqrt{17} by 32.
x=\frac{3\sqrt{17}}{4}+2 x=-\frac{3\sqrt{17}}{4}+2
The equation is now solved.
16x^{2}-64x-89=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-64x-89-\left(-89\right)=-\left(-89\right)
Add 89 to both sides of the equation.
16x^{2}-64x=-\left(-89\right)
Subtracting -89 from itself leaves 0.
16x^{2}-64x=89
Subtract -89 from 0.
\frac{16x^{2}-64x}{16}=\frac{89}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{64}{16}\right)x=\frac{89}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-4x=\frac{89}{16}
Divide -64 by 16.
x^{2}-4x+\left(-2\right)^{2}=\frac{89}{16}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{89}{16}+4
Square -2.
x^{2}-4x+4=\frac{153}{16}
Add \frac{89}{16} to 4.
\left(x-2\right)^{2}=\frac{153}{16}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{153}{16}}
Take the square root of both sides of the equation.
x-2=\frac{3\sqrt{17}}{4} x-2=-\frac{3\sqrt{17}}{4}
Simplify.
x=\frac{3\sqrt{17}}{4}+2 x=-\frac{3\sqrt{17}}{4}+2
Add 2 to both sides of the equation.