Solve for x
x = \frac{25}{4} = 6\frac{1}{4} = 6.25
Graph
Share
Copied to clipboard
16x^{2}-25\left(\frac{16}{9}x^{2}-\frac{128}{9}x+\frac{256}{9}\right)=400
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-\frac{16}{3}\right)^{2}.
16x^{2}-\frac{400}{9}x^{2}+\frac{3200}{9}x-\frac{6400}{9}=400
Use the distributive property to multiply -25 by \frac{16}{9}x^{2}-\frac{128}{9}x+\frac{256}{9}.
-\frac{256}{9}x^{2}+\frac{3200}{9}x-\frac{6400}{9}=400
Combine 16x^{2} and -\frac{400}{9}x^{2} to get -\frac{256}{9}x^{2}.
-\frac{256}{9}x^{2}+\frac{3200}{9}x-\frac{6400}{9}-400=0
Subtract 400 from both sides.
-\frac{256}{9}x^{2}+\frac{3200}{9}x-\frac{10000}{9}=0
Subtract 400 from -\frac{6400}{9} to get -\frac{10000}{9}.
x=\frac{-\frac{3200}{9}±\sqrt{\left(\frac{3200}{9}\right)^{2}-4\left(-\frac{256}{9}\right)\left(-\frac{10000}{9}\right)}}{2\left(-\frac{256}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{256}{9} for a, \frac{3200}{9} for b, and -\frac{10000}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3200}{9}±\sqrt{\frac{10240000}{81}-4\left(-\frac{256}{9}\right)\left(-\frac{10000}{9}\right)}}{2\left(-\frac{256}{9}\right)}
Square \frac{3200}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3200}{9}±\sqrt{\frac{10240000}{81}+\frac{1024}{9}\left(-\frac{10000}{9}\right)}}{2\left(-\frac{256}{9}\right)}
Multiply -4 times -\frac{256}{9}.
x=\frac{-\frac{3200}{9}±\sqrt{\frac{10240000-10240000}{81}}}{2\left(-\frac{256}{9}\right)}
Multiply \frac{1024}{9} times -\frac{10000}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{3200}{9}±\sqrt{0}}{2\left(-\frac{256}{9}\right)}
Add \frac{10240000}{81} to -\frac{10240000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{\frac{3200}{9}}{2\left(-\frac{256}{9}\right)}
Take the square root of 0.
x=-\frac{\frac{3200}{9}}{-\frac{512}{9}}
Multiply 2 times -\frac{256}{9}.
x=\frac{25}{4}
Divide -\frac{3200}{9} by -\frac{512}{9} by multiplying -\frac{3200}{9} by the reciprocal of -\frac{512}{9}.
16x^{2}-25\left(\frac{16}{9}x^{2}-\frac{128}{9}x+\frac{256}{9}\right)=400
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-\frac{16}{3}\right)^{2}.
16x^{2}-\frac{400}{9}x^{2}+\frac{3200}{9}x-\frac{6400}{9}=400
Use the distributive property to multiply -25 by \frac{16}{9}x^{2}-\frac{128}{9}x+\frac{256}{9}.
-\frac{256}{9}x^{2}+\frac{3200}{9}x-\frac{6400}{9}=400
Combine 16x^{2} and -\frac{400}{9}x^{2} to get -\frac{256}{9}x^{2}.
-\frac{256}{9}x^{2}+\frac{3200}{9}x=400+\frac{6400}{9}
Add \frac{6400}{9} to both sides.
-\frac{256}{9}x^{2}+\frac{3200}{9}x=\frac{10000}{9}
Add 400 and \frac{6400}{9} to get \frac{10000}{9}.
\frac{-\frac{256}{9}x^{2}+\frac{3200}{9}x}{-\frac{256}{9}}=\frac{\frac{10000}{9}}{-\frac{256}{9}}
Divide both sides of the equation by -\frac{256}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{3200}{9}}{-\frac{256}{9}}x=\frac{\frac{10000}{9}}{-\frac{256}{9}}
Dividing by -\frac{256}{9} undoes the multiplication by -\frac{256}{9}.
x^{2}-\frac{25}{2}x=\frac{\frac{10000}{9}}{-\frac{256}{9}}
Divide \frac{3200}{9} by -\frac{256}{9} by multiplying \frac{3200}{9} by the reciprocal of -\frac{256}{9}.
x^{2}-\frac{25}{2}x=-\frac{625}{16}
Divide \frac{10000}{9} by -\frac{256}{9} by multiplying \frac{10000}{9} by the reciprocal of -\frac{256}{9}.
x^{2}-\frac{25}{2}x+\left(-\frac{25}{4}\right)^{2}=-\frac{625}{16}+\left(-\frac{25}{4}\right)^{2}
Divide -\frac{25}{2}, the coefficient of the x term, by 2 to get -\frac{25}{4}. Then add the square of -\frac{25}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{2}x+\frac{625}{16}=\frac{-625+625}{16}
Square -\frac{25}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{2}x+\frac{625}{16}=0
Add -\frac{625}{16} to \frac{625}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{4}\right)^{2}=0
Factor x^{2}-\frac{25}{2}x+\frac{625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{4}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{25}{4}=0 x-\frac{25}{4}=0
Simplify.
x=\frac{25}{4} x=\frac{25}{4}
Add \frac{25}{4} to both sides of the equation.
x=\frac{25}{4}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}