Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-24 ab=16\left(-27\right)=-432
Factor the expression by grouping. First, the expression needs to be rewritten as 16x^{2}+ax+bx-27. To find a and b, set up a system to be solved.
1,-432 2,-216 3,-144 4,-108 6,-72 8,-54 9,-48 12,-36 16,-27 18,-24
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -432.
1-432=-431 2-216=-214 3-144=-141 4-108=-104 6-72=-66 8-54=-46 9-48=-39 12-36=-24 16-27=-11 18-24=-6
Calculate the sum for each pair.
a=-36 b=12
The solution is the pair that gives sum -24.
\left(16x^{2}-36x\right)+\left(12x-27\right)
Rewrite 16x^{2}-24x-27 as \left(16x^{2}-36x\right)+\left(12x-27\right).
4x\left(4x-9\right)+3\left(4x-9\right)
Factor out 4x in the first and 3 in the second group.
\left(4x-9\right)\left(4x+3\right)
Factor out common term 4x-9 by using distributive property.
16x^{2}-24x-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\left(-27\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 16\left(-27\right)}}{2\times 16}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-64\left(-27\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-24\right)±\sqrt{576+1728}}{2\times 16}
Multiply -64 times -27.
x=\frac{-\left(-24\right)±\sqrt{2304}}{2\times 16}
Add 576 to 1728.
x=\frac{-\left(-24\right)±48}{2\times 16}
Take the square root of 2304.
x=\frac{24±48}{2\times 16}
The opposite of -24 is 24.
x=\frac{24±48}{32}
Multiply 2 times 16.
x=\frac{72}{32}
Now solve the equation x=\frac{24±48}{32} when ± is plus. Add 24 to 48.
x=\frac{9}{4}
Reduce the fraction \frac{72}{32} to lowest terms by extracting and canceling out 8.
x=-\frac{24}{32}
Now solve the equation x=\frac{24±48}{32} when ± is minus. Subtract 48 from 24.
x=-\frac{3}{4}
Reduce the fraction \frac{-24}{32} to lowest terms by extracting and canceling out 8.
16x^{2}-24x-27=16\left(x-\frac{9}{4}\right)\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9}{4} for x_{1} and -\frac{3}{4} for x_{2}.
16x^{2}-24x-27=16\left(x-\frac{9}{4}\right)\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
16x^{2}-24x-27=16\times \frac{4x-9}{4}\left(x+\frac{3}{4}\right)
Subtract \frac{9}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
16x^{2}-24x-27=16\times \frac{4x-9}{4}\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
16x^{2}-24x-27=16\times \frac{\left(4x-9\right)\left(4x+3\right)}{4\times 4}
Multiply \frac{4x-9}{4} times \frac{4x+3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
16x^{2}-24x-27=16\times \frac{\left(4x-9\right)\left(4x+3\right)}{16}
Multiply 4 times 4.
16x^{2}-24x-27=\left(4x-9\right)\left(4x+3\right)
Cancel out 16, the greatest common factor in 16 and 16.