Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-24x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\times 3}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 16\times 3}}{2\times 16}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-64\times 3}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-24\right)±\sqrt{576-192}}{2\times 16}
Multiply -64 times 3.
x=\frac{-\left(-24\right)±\sqrt{384}}{2\times 16}
Add 576 to -192.
x=\frac{-\left(-24\right)±8\sqrt{6}}{2\times 16}
Take the square root of 384.
x=\frac{24±8\sqrt{6}}{2\times 16}
The opposite of -24 is 24.
x=\frac{24±8\sqrt{6}}{32}
Multiply 2 times 16.
x=\frac{8\sqrt{6}+24}{32}
Now solve the equation x=\frac{24±8\sqrt{6}}{32} when ± is plus. Add 24 to 8\sqrt{6}.
x=\frac{\sqrt{6}+3}{4}
Divide 24+8\sqrt{6} by 32.
x=\frac{24-8\sqrt{6}}{32}
Now solve the equation x=\frac{24±8\sqrt{6}}{32} when ± is minus. Subtract 8\sqrt{6} from 24.
x=\frac{3-\sqrt{6}}{4}
Divide 24-8\sqrt{6} by 32.
16x^{2}-24x+3=16\left(x-\frac{\sqrt{6}+3}{4}\right)\left(x-\frac{3-\sqrt{6}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{6}}{4} for x_{1} and \frac{3-\sqrt{6}}{4} for x_{2}.