Solve for x (complex solution)
x=\frac{1+9\sqrt{79}i}{32}\approx 0.03125+2.49980468i
x=\frac{-9\sqrt{79}i+1}{32}\approx 0.03125-2.49980468i
Graph
Share
Copied to clipboard
16x^{2}-x+100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 16\times 100}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -1 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-64\times 100}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-1\right)±\sqrt{1-6400}}{2\times 16}
Multiply -64 times 100.
x=\frac{-\left(-1\right)±\sqrt{-6399}}{2\times 16}
Add 1 to -6400.
x=\frac{-\left(-1\right)±9\sqrt{79}i}{2\times 16}
Take the square root of -6399.
x=\frac{1±9\sqrt{79}i}{2\times 16}
The opposite of -1 is 1.
x=\frac{1±9\sqrt{79}i}{32}
Multiply 2 times 16.
x=\frac{1+9\sqrt{79}i}{32}
Now solve the equation x=\frac{1±9\sqrt{79}i}{32} when ± is plus. Add 1 to 9i\sqrt{79}.
x=\frac{-9\sqrt{79}i+1}{32}
Now solve the equation x=\frac{1±9\sqrt{79}i}{32} when ± is minus. Subtract 9i\sqrt{79} from 1.
x=\frac{1+9\sqrt{79}i}{32} x=\frac{-9\sqrt{79}i+1}{32}
The equation is now solved.
16x^{2}-x+100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-x+100-100=-100
Subtract 100 from both sides of the equation.
16x^{2}-x=-100
Subtracting 100 from itself leaves 0.
\frac{16x^{2}-x}{16}=-\frac{100}{16}
Divide both sides by 16.
x^{2}-\frac{1}{16}x=-\frac{100}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{1}{16}x=-\frac{25}{4}
Reduce the fraction \frac{-100}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{16}x+\left(-\frac{1}{32}\right)^{2}=-\frac{25}{4}+\left(-\frac{1}{32}\right)^{2}
Divide -\frac{1}{16}, the coefficient of the x term, by 2 to get -\frac{1}{32}. Then add the square of -\frac{1}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{25}{4}+\frac{1}{1024}
Square -\frac{1}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{6399}{1024}
Add -\frac{25}{4} to \frac{1}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{32}\right)^{2}=-\frac{6399}{1024}
Factor x^{2}-\frac{1}{16}x+\frac{1}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{32}\right)^{2}}=\sqrt{-\frac{6399}{1024}}
Take the square root of both sides of the equation.
x-\frac{1}{32}=\frac{9\sqrt{79}i}{32} x-\frac{1}{32}=-\frac{9\sqrt{79}i}{32}
Simplify.
x=\frac{1+9\sqrt{79}i}{32} x=\frac{-9\sqrt{79}i+1}{32}
Add \frac{1}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}