Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-16x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 16\left(-16\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 16\left(-16\right)}}{2\times 16}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-64\left(-16\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-16\right)±\sqrt{256+1024}}{2\times 16}
Multiply -64 times -16.
x=\frac{-\left(-16\right)±\sqrt{1280}}{2\times 16}
Add 256 to 1024.
x=\frac{-\left(-16\right)±16\sqrt{5}}{2\times 16}
Take the square root of 1280.
x=\frac{16±16\sqrt{5}}{2\times 16}
The opposite of -16 is 16.
x=\frac{16±16\sqrt{5}}{32}
Multiply 2 times 16.
x=\frac{16\sqrt{5}+16}{32}
Now solve the equation x=\frac{16±16\sqrt{5}}{32} when ± is plus. Add 16 to 16\sqrt{5}.
x=\frac{\sqrt{5}+1}{2}
Divide 16+16\sqrt{5} by 32.
x=\frac{16-16\sqrt{5}}{32}
Now solve the equation x=\frac{16±16\sqrt{5}}{32} when ± is minus. Subtract 16\sqrt{5} from 16.
x=\frac{1-\sqrt{5}}{2}
Divide 16-16\sqrt{5} by 32.
16x^{2}-16x-16=16\left(x-\frac{\sqrt{5}+1}{2}\right)\left(x-\frac{1-\sqrt{5}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{5}}{2} for x_{1} and \frac{1-\sqrt{5}}{2} for x_{2}.