Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
16x^{2}+40x+25-4x^{2}=40x+100
Subtract 4x^{2} from both sides.
12x^{2}+40x+25=40x+100
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}+40x+25-40x=100
Subtract 40x from both sides.
12x^{2}+25=100
Combine 40x and -40x to get 0.
12x^{2}+25-100=0
Subtract 100 from both sides.
12x^{2}-75=0
Subtract 100 from 25 to get -75.
4x^{2}-25=0
Divide both sides by 3.
\left(2x-5\right)\left(2x+5\right)=0
Consider 4x^{2}-25. Rewrite 4x^{2}-25 as \left(2x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{2} x=-\frac{5}{2}
To find equation solutions, solve 2x-5=0 and 2x+5=0.
16x^{2}+40x+25-4x^{2}=40x+100
Subtract 4x^{2} from both sides.
12x^{2}+40x+25=40x+100
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}+40x+25-40x=100
Subtract 40x from both sides.
12x^{2}+25=100
Combine 40x and -40x to get 0.
12x^{2}=100-25
Subtract 25 from both sides.
12x^{2}=75
Subtract 25 from 100 to get 75.
x^{2}=\frac{75}{12}
Divide both sides by 12.
x^{2}=\frac{25}{4}
Reduce the fraction \frac{75}{12} to lowest terms by extracting and canceling out 3.
x=\frac{5}{2} x=-\frac{5}{2}
Take the square root of both sides of the equation.
16x^{2}+40x+25-4x^{2}=40x+100
Subtract 4x^{2} from both sides.
12x^{2}+40x+25=40x+100
Combine 16x^{2} and -4x^{2} to get 12x^{2}.
12x^{2}+40x+25-40x=100
Subtract 40x from both sides.
12x^{2}+25=100
Combine 40x and -40x to get 0.
12x^{2}+25-100=0
Subtract 100 from both sides.
12x^{2}-75=0
Subtract 100 from 25 to get -75.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-75\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-75\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-75\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{3600}}{2\times 12}
Multiply -48 times -75.
x=\frac{0±60}{2\times 12}
Take the square root of 3600.
x=\frac{0±60}{24}
Multiply 2 times 12.
x=\frac{5}{2}
Now solve the equation x=\frac{0±60}{24} when ± is plus. Reduce the fraction \frac{60}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{5}{2}
Now solve the equation x=\frac{0±60}{24} when ± is minus. Reduce the fraction \frac{-60}{24} to lowest terms by extracting and canceling out 12.
x=\frac{5}{2} x=-\frac{5}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}