Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+18x-774=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 16\left(-774\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{324-4\times 16\left(-774\right)}}{2\times 16}
Square 18.
x=\frac{-18±\sqrt{324-64\left(-774\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-18±\sqrt{324+49536}}{2\times 16}
Multiply -64 times -774.
x=\frac{-18±\sqrt{49860}}{2\times 16}
Add 324 to 49536.
x=\frac{-18±6\sqrt{1385}}{2\times 16}
Take the square root of 49860.
x=\frac{-18±6\sqrt{1385}}{32}
Multiply 2 times 16.
x=\frac{6\sqrt{1385}-18}{32}
Now solve the equation x=\frac{-18±6\sqrt{1385}}{32} when ± is plus. Add -18 to 6\sqrt{1385}.
x=\frac{3\sqrt{1385}-9}{16}
Divide -18+6\sqrt{1385} by 32.
x=\frac{-6\sqrt{1385}-18}{32}
Now solve the equation x=\frac{-18±6\sqrt{1385}}{32} when ± is minus. Subtract 6\sqrt{1385} from -18.
x=\frac{-3\sqrt{1385}-9}{16}
Divide -18-6\sqrt{1385} by 32.
16x^{2}+18x-774=16\left(x-\frac{3\sqrt{1385}-9}{16}\right)\left(x-\frac{-3\sqrt{1385}-9}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+3\sqrt{1385}}{16} for x_{1} and \frac{-9-3\sqrt{1385}}{16} for x_{2}.