Solve for x (complex solution)
x=\sqrt{89}-35\approx -25.566018868
x=-\left(\sqrt{89}+35\right)\approx -44.433981132
Solve for x
x=\sqrt{89}-35\approx -25.566018868
x=-\sqrt{89}-35\approx -44.433981132
Graph
Share
Copied to clipboard
1936=\left(80+x\right)\left(10-x\right)
Multiply 16 and 121 to get 1936.
1936=800-70x-x^{2}
Use the distributive property to multiply 80+x by 10-x and combine like terms.
800-70x-x^{2}=1936
Swap sides so that all variable terms are on the left hand side.
800-70x-x^{2}-1936=0
Subtract 1936 from both sides.
-1136-70x-x^{2}=0
Subtract 1936 from 800 to get -1136.
-x^{2}-70x-1136=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\left(-1\right)\left(-1136\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -70 for b, and -1136 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\left(-1\right)\left(-1136\right)}}{2\left(-1\right)}
Square -70.
x=\frac{-\left(-70\right)±\sqrt{4900+4\left(-1136\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-70\right)±\sqrt{4900-4544}}{2\left(-1\right)}
Multiply 4 times -1136.
x=\frac{-\left(-70\right)±\sqrt{356}}{2\left(-1\right)}
Add 4900 to -4544.
x=\frac{-\left(-70\right)±2\sqrt{89}}{2\left(-1\right)}
Take the square root of 356.
x=\frac{70±2\sqrt{89}}{2\left(-1\right)}
The opposite of -70 is 70.
x=\frac{70±2\sqrt{89}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{89}+70}{-2}
Now solve the equation x=\frac{70±2\sqrt{89}}{-2} when ± is plus. Add 70 to 2\sqrt{89}.
x=-\left(\sqrt{89}+35\right)
Divide 70+2\sqrt{89} by -2.
x=\frac{70-2\sqrt{89}}{-2}
Now solve the equation x=\frac{70±2\sqrt{89}}{-2} when ± is minus. Subtract 2\sqrt{89} from 70.
x=\sqrt{89}-35
Divide 70-2\sqrt{89} by -2.
x=-\left(\sqrt{89}+35\right) x=\sqrt{89}-35
The equation is now solved.
1936=\left(80+x\right)\left(10-x\right)
Multiply 16 and 121 to get 1936.
1936=800-70x-x^{2}
Use the distributive property to multiply 80+x by 10-x and combine like terms.
800-70x-x^{2}=1936
Swap sides so that all variable terms are on the left hand side.
-70x-x^{2}=1936-800
Subtract 800 from both sides.
-70x-x^{2}=1136
Subtract 800 from 1936 to get 1136.
-x^{2}-70x=1136
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-70x}{-1}=\frac{1136}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{70}{-1}\right)x=\frac{1136}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+70x=\frac{1136}{-1}
Divide -70 by -1.
x^{2}+70x=-1136
Divide 1136 by -1.
x^{2}+70x+35^{2}=-1136+35^{2}
Divide 70, the coefficient of the x term, by 2 to get 35. Then add the square of 35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+70x+1225=-1136+1225
Square 35.
x^{2}+70x+1225=89
Add -1136 to 1225.
\left(x+35\right)^{2}=89
Factor x^{2}+70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
x+35=\sqrt{89} x+35=-\sqrt{89}
Simplify.
x=\sqrt{89}-35 x=-\sqrt{89}-35
Subtract 35 from both sides of the equation.
1936=\left(80+x\right)\left(10-x\right)
Multiply 16 and 121 to get 1936.
1936=800-70x-x^{2}
Use the distributive property to multiply 80+x by 10-x and combine like terms.
800-70x-x^{2}=1936
Swap sides so that all variable terms are on the left hand side.
800-70x-x^{2}-1936=0
Subtract 1936 from both sides.
-1136-70x-x^{2}=0
Subtract 1936 from 800 to get -1136.
-x^{2}-70x-1136=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\left(-1\right)\left(-1136\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -70 for b, and -1136 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\left(-1\right)\left(-1136\right)}}{2\left(-1\right)}
Square -70.
x=\frac{-\left(-70\right)±\sqrt{4900+4\left(-1136\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-70\right)±\sqrt{4900-4544}}{2\left(-1\right)}
Multiply 4 times -1136.
x=\frac{-\left(-70\right)±\sqrt{356}}{2\left(-1\right)}
Add 4900 to -4544.
x=\frac{-\left(-70\right)±2\sqrt{89}}{2\left(-1\right)}
Take the square root of 356.
x=\frac{70±2\sqrt{89}}{2\left(-1\right)}
The opposite of -70 is 70.
x=\frac{70±2\sqrt{89}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{89}+70}{-2}
Now solve the equation x=\frac{70±2\sqrt{89}}{-2} when ± is plus. Add 70 to 2\sqrt{89}.
x=-\left(\sqrt{89}+35\right)
Divide 70+2\sqrt{89} by -2.
x=\frac{70-2\sqrt{89}}{-2}
Now solve the equation x=\frac{70±2\sqrt{89}}{-2} when ± is minus. Subtract 2\sqrt{89} from 70.
x=\sqrt{89}-35
Divide 70-2\sqrt{89} by -2.
x=-\left(\sqrt{89}+35\right) x=\sqrt{89}-35
The equation is now solved.
1936=\left(80+x\right)\left(10-x\right)
Multiply 16 and 121 to get 1936.
1936=800-70x-x^{2}
Use the distributive property to multiply 80+x by 10-x and combine like terms.
800-70x-x^{2}=1936
Swap sides so that all variable terms are on the left hand side.
-70x-x^{2}=1936-800
Subtract 800 from both sides.
-70x-x^{2}=1136
Subtract 800 from 1936 to get 1136.
-x^{2}-70x=1136
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-70x}{-1}=\frac{1136}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{70}{-1}\right)x=\frac{1136}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+70x=\frac{1136}{-1}
Divide -70 by -1.
x^{2}+70x=-1136
Divide 1136 by -1.
x^{2}+70x+35^{2}=-1136+35^{2}
Divide 70, the coefficient of the x term, by 2 to get 35. Then add the square of 35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+70x+1225=-1136+1225
Square 35.
x^{2}+70x+1225=89
Add -1136 to 1225.
\left(x+35\right)^{2}=89
Factor x^{2}+70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
x+35=\sqrt{89} x+35=-\sqrt{89}
Simplify.
x=\sqrt{89}-35 x=-\sqrt{89}-35
Subtract 35 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}