Evaluate
\frac{89}{15}\approx 5.933333333
Factor
\frac{89}{3 \cdot 5} = 5\frac{14}{15} = 5.933333333333334
Share
Copied to clipboard
\frac{144+3}{9}-10-\frac{2}{5}
Multiply 16 and 9 to get 144.
\frac{147}{9}-10-\frac{2}{5}
Add 144 and 3 to get 147.
\frac{49}{3}-10-\frac{2}{5}
Reduce the fraction \frac{147}{9} to lowest terms by extracting and canceling out 3.
\frac{49}{3}-\frac{30}{3}-\frac{2}{5}
Convert 10 to fraction \frac{30}{3}.
\frac{49-30}{3}-\frac{2}{5}
Since \frac{49}{3} and \frac{30}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{3}-\frac{2}{5}
Subtract 30 from 49 to get 19.
\frac{95}{15}-\frac{6}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{19}{3} and \frac{2}{5} to fractions with denominator 15.
\frac{95-6}{15}
Since \frac{95}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{89}{15}
Subtract 6 from 95 to get 89.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}