Evaluate
\frac{16}{15}\approx 1.066666667
Factor
\frac{2 ^ {4}}{3 \cdot 5} = 1\frac{1}{15} = 1.0666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)16}\\\end{array}
Use the 1^{st} digit 1 from dividend 16
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)16}\\\end{array}
Since 1 is less than 15, use the next digit 6 from dividend 16 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)16}\\\end{array}
Use the 2^{nd} digit 6 from dividend 16
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)16}\\\phantom{15)}\underline{\phantom{}15\phantom{}}\\\phantom{15)9}1\\\end{array}
Find closest multiple of 15 to 16. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 16 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 15, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}