Solve for x
x=-18
x=14
Graph
Share
Copied to clipboard
\left(x+6\right)\times 16-\left(x-6\right)\times 20=\left(x-6\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right), the least common multiple of x-6,x+6.
16x+96-\left(x-6\right)\times 20=\left(x-6\right)\left(x+6\right)
Use the distributive property to multiply x+6 by 16.
16x+96-\left(20x-120\right)=\left(x-6\right)\left(x+6\right)
Use the distributive property to multiply x-6 by 20.
16x+96-20x+120=\left(x-6\right)\left(x+6\right)
To find the opposite of 20x-120, find the opposite of each term.
-4x+96+120=\left(x-6\right)\left(x+6\right)
Combine 16x and -20x to get -4x.
-4x+216=\left(x-6\right)\left(x+6\right)
Add 96 and 120 to get 216.
-4x+216=x^{2}-36
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
-4x+216-x^{2}=-36
Subtract x^{2} from both sides.
-4x+216-x^{2}+36=0
Add 36 to both sides.
-4x+252-x^{2}=0
Add 216 and 36 to get 252.
-x^{2}-4x+252=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 252}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 252}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 252}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+1008}}{2\left(-1\right)}
Multiply 4 times 252.
x=\frac{-\left(-4\right)±\sqrt{1024}}{2\left(-1\right)}
Add 16 to 1008.
x=\frac{-\left(-4\right)±32}{2\left(-1\right)}
Take the square root of 1024.
x=\frac{4±32}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±32}{-2}
Multiply 2 times -1.
x=\frac{36}{-2}
Now solve the equation x=\frac{4±32}{-2} when ± is plus. Add 4 to 32.
x=-18
Divide 36 by -2.
x=-\frac{28}{-2}
Now solve the equation x=\frac{4±32}{-2} when ± is minus. Subtract 32 from 4.
x=14
Divide -28 by -2.
x=-18 x=14
The equation is now solved.
\left(x+6\right)\times 16-\left(x-6\right)\times 20=\left(x-6\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right), the least common multiple of x-6,x+6.
16x+96-\left(x-6\right)\times 20=\left(x-6\right)\left(x+6\right)
Use the distributive property to multiply x+6 by 16.
16x+96-\left(20x-120\right)=\left(x-6\right)\left(x+6\right)
Use the distributive property to multiply x-6 by 20.
16x+96-20x+120=\left(x-6\right)\left(x+6\right)
To find the opposite of 20x-120, find the opposite of each term.
-4x+96+120=\left(x-6\right)\left(x+6\right)
Combine 16x and -20x to get -4x.
-4x+216=\left(x-6\right)\left(x+6\right)
Add 96 and 120 to get 216.
-4x+216=x^{2}-36
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
-4x+216-x^{2}=-36
Subtract x^{2} from both sides.
-4x-x^{2}=-36-216
Subtract 216 from both sides.
-4x-x^{2}=-252
Subtract 216 from -36 to get -252.
-x^{2}-4x=-252
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=-\frac{252}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{252}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{252}{-1}
Divide -4 by -1.
x^{2}+4x=252
Divide -252 by -1.
x^{2}+4x+2^{2}=252+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=252+4
Square 2.
x^{2}+4x+4=256
Add 252 to 4.
\left(x+2\right)^{2}=256
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{256}
Take the square root of both sides of the equation.
x+2=16 x+2=-16
Simplify.
x=14 x=-18
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}