Solve for p
p=-\frac{1}{3}\approx -0.333333333
p=\frac{1}{5}=0.2
Share
Copied to clipboard
16p^{2}=1-2p+p^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-p\right)^{2}.
16p^{2}-1=-2p+p^{2}
Subtract 1 from both sides.
16p^{2}-1+2p=p^{2}
Add 2p to both sides.
16p^{2}-1+2p-p^{2}=0
Subtract p^{2} from both sides.
15p^{2}-1+2p=0
Combine 16p^{2} and -p^{2} to get 15p^{2}.
15p^{2}+2p-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=15\left(-1\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15p^{2}+ap+bp-1. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(15p^{2}-3p\right)+\left(5p-1\right)
Rewrite 15p^{2}+2p-1 as \left(15p^{2}-3p\right)+\left(5p-1\right).
3p\left(5p-1\right)+5p-1
Factor out 3p in 15p^{2}-3p.
\left(5p-1\right)\left(3p+1\right)
Factor out common term 5p-1 by using distributive property.
p=\frac{1}{5} p=-\frac{1}{3}
To find equation solutions, solve 5p-1=0 and 3p+1=0.
16p^{2}=1-2p+p^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-p\right)^{2}.
16p^{2}-1=-2p+p^{2}
Subtract 1 from both sides.
16p^{2}-1+2p=p^{2}
Add 2p to both sides.
16p^{2}-1+2p-p^{2}=0
Subtract p^{2} from both sides.
15p^{2}-1+2p=0
Combine 16p^{2} and -p^{2} to get 15p^{2}.
15p^{2}+2p-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-2±\sqrt{2^{2}-4\times 15\left(-1\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-2±\sqrt{4-4\times 15\left(-1\right)}}{2\times 15}
Square 2.
p=\frac{-2±\sqrt{4-60\left(-1\right)}}{2\times 15}
Multiply -4 times 15.
p=\frac{-2±\sqrt{4+60}}{2\times 15}
Multiply -60 times -1.
p=\frac{-2±\sqrt{64}}{2\times 15}
Add 4 to 60.
p=\frac{-2±8}{2\times 15}
Take the square root of 64.
p=\frac{-2±8}{30}
Multiply 2 times 15.
p=\frac{6}{30}
Now solve the equation p=\frac{-2±8}{30} when ± is plus. Add -2 to 8.
p=\frac{1}{5}
Reduce the fraction \frac{6}{30} to lowest terms by extracting and canceling out 6.
p=-\frac{10}{30}
Now solve the equation p=\frac{-2±8}{30} when ± is minus. Subtract 8 from -2.
p=-\frac{1}{3}
Reduce the fraction \frac{-10}{30} to lowest terms by extracting and canceling out 10.
p=\frac{1}{5} p=-\frac{1}{3}
The equation is now solved.
16p^{2}=1-2p+p^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-p\right)^{2}.
16p^{2}+2p=1+p^{2}
Add 2p to both sides.
16p^{2}+2p-p^{2}=1
Subtract p^{2} from both sides.
15p^{2}+2p=1
Combine 16p^{2} and -p^{2} to get 15p^{2}.
\frac{15p^{2}+2p}{15}=\frac{1}{15}
Divide both sides by 15.
p^{2}+\frac{2}{15}p=\frac{1}{15}
Dividing by 15 undoes the multiplication by 15.
p^{2}+\frac{2}{15}p+\left(\frac{1}{15}\right)^{2}=\frac{1}{15}+\left(\frac{1}{15}\right)^{2}
Divide \frac{2}{15}, the coefficient of the x term, by 2 to get \frac{1}{15}. Then add the square of \frac{1}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+\frac{2}{15}p+\frac{1}{225}=\frac{1}{15}+\frac{1}{225}
Square \frac{1}{15} by squaring both the numerator and the denominator of the fraction.
p^{2}+\frac{2}{15}p+\frac{1}{225}=\frac{16}{225}
Add \frac{1}{15} to \frac{1}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p+\frac{1}{15}\right)^{2}=\frac{16}{225}
Factor p^{2}+\frac{2}{15}p+\frac{1}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{1}{15}\right)^{2}}=\sqrt{\frac{16}{225}}
Take the square root of both sides of the equation.
p+\frac{1}{15}=\frac{4}{15} p+\frac{1}{15}=-\frac{4}{15}
Simplify.
p=\frac{1}{5} p=-\frac{1}{3}
Subtract \frac{1}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}