Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x=16
Swap sides so that all variable terms are on the left hand side.
4x^{2}+4x-16=0
Subtract 16 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-16\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-16\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-16\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+256}}{2\times 4}
Multiply -16 times -16.
x=\frac{-4±\sqrt{272}}{2\times 4}
Add 16 to 256.
x=\frac{-4±4\sqrt{17}}{2\times 4}
Take the square root of 272.
x=\frac{-4±4\sqrt{17}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{17}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{17}}{8} when ± is plus. Add -4 to 4\sqrt{17}.
x=\frac{\sqrt{17}-1}{2}
Divide -4+4\sqrt{17} by 8.
x=\frac{-4\sqrt{17}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{17}}{8} when ± is minus. Subtract 4\sqrt{17} from -4.
x=\frac{-\sqrt{17}-1}{2}
Divide -4-4\sqrt{17} by 8.
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
The equation is now solved.
4x^{2}+4x=16
Swap sides so that all variable terms are on the left hand side.
\frac{4x^{2}+4x}{4}=\frac{16}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{16}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{16}{4}
Divide 4 by 4.
x^{2}+x=4
Divide 16 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=4+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=4+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{17}{4}
Add 4 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{17}}{2} x+\frac{1}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.