Solve for x
x = \frac{59}{2} = 29\frac{1}{2} = 29.5
Graph
Share
Copied to clipboard
16=x\times \frac{192}{12\times 16+18+16\times 9}
Multiply 12 and 16 to get 192.
16=x\times \frac{192}{192+18+144}
Multiply 12 and 16 to get 192. Multiply 16 and 9 to get 144.
16=x\times \frac{192}{210+144}
Add 192 and 18 to get 210.
16=x\times \frac{192}{354}
Add 210 and 144 to get 354.
16=x\times \frac{32}{59}
Reduce the fraction \frac{192}{354} to lowest terms by extracting and canceling out 6.
x\times \frac{32}{59}=16
Swap sides so that all variable terms are on the left hand side.
x=16\times \frac{59}{32}
Multiply both sides by \frac{59}{32}, the reciprocal of \frac{32}{59}.
x=\frac{16\times 59}{32}
Express 16\times \frac{59}{32} as a single fraction.
x=\frac{944}{32}
Multiply 16 and 59 to get 944.
x=\frac{59}{2}
Reduce the fraction \frac{944}{32} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}