Solve for t
t=-\frac{\ln(320)}{\lambda }
\lambda \neq 0
Solve for λ
\lambda =-\frac{\ln(320)}{t}
t\neq 0
Share
Copied to clipboard
\frac{16}{0.05}=e^{\left(-\lambda \right)t}
Divide both sides by 0.05.
\frac{1600}{5}=e^{\left(-\lambda \right)t}
Expand \frac{16}{0.05} by multiplying both numerator and the denominator by 100.
320=e^{\left(-\lambda \right)t}
Divide 1600 by 5 to get 320.
e^{\left(-\lambda \right)t}=320
Swap sides so that all variable terms are on the left hand side.
\log(e^{\left(-\lambda \right)t})=\log(320)
Take the logarithm of both sides of the equation.
\left(-\lambda \right)t\log(e)=\log(320)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-\lambda \right)t=\frac{\log(320)}{\log(e)}
Divide both sides by \log(e).
\left(-\lambda \right)t=\log_{e}\left(320\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(320)}{-\lambda }
Divide both sides by -\lambda .
\frac{16}{0.05}=e^{\left(-\lambda \right)t}
Divide both sides by 0.05.
\frac{1600}{5}=e^{\left(-\lambda \right)t}
Expand \frac{16}{0.05} by multiplying both numerator and the denominator by 100.
320=e^{\left(-\lambda \right)t}
Divide 1600 by 5 to get 320.
e^{\left(-\lambda \right)t}=320
Swap sides so that all variable terms are on the left hand side.
e^{-t\lambda }=320
Reorder the terms.
e^{\left(-t\right)\lambda }=320
Use the rules of exponents and logarithms to solve the equation.
\log(e^{\left(-t\right)\lambda })=\log(320)
Take the logarithm of both sides of the equation.
\left(-t\right)\lambda \log(e)=\log(320)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-t\right)\lambda =\frac{\log(320)}{\log(e)}
Divide both sides by \log(e).
\left(-t\right)\lambda =\log_{e}\left(320\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
\lambda =\frac{\ln(320)}{-t}
Divide both sides by -t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}