Solve for x
x = \frac{40 \sqrt{109}}{109} \approx 3.831305141
x = -\frac{40 \sqrt{109}}{109} \approx -3.831305141
Graph
Share
Copied to clipboard
16=x^{2}+\frac{\left(3x\right)^{2}}{10^{2}}
To raise \frac{3x}{10} to a power, raise both numerator and denominator to the power and then divide.
16=\frac{x^{2}\times 10^{2}}{10^{2}}+\frac{\left(3x\right)^{2}}{10^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{10^{2}}{10^{2}}.
16=\frac{x^{2}\times 10^{2}+\left(3x\right)^{2}}{10^{2}}
Since \frac{x^{2}\times 10^{2}}{10^{2}} and \frac{\left(3x\right)^{2}}{10^{2}} have the same denominator, add them by adding their numerators.
16=\frac{100x^{2}+\left(3x\right)^{2}}{10^{2}}
Do the multiplications in x^{2}\times 10^{2}+\left(3x\right)^{2}.
16=\frac{109x^{2}}{10^{2}}
Combine like terms in 100x^{2}+\left(3x\right)^{2}.
16=\frac{109x^{2}}{100}
Calculate 10 to the power of 2 and get 100.
\frac{109x^{2}}{100}=16
Swap sides so that all variable terms are on the left hand side.
109x^{2}=16\times 100
Multiply both sides by 100.
109x^{2}=1600
Multiply 16 and 100 to get 1600.
x^{2}=\frac{1600}{109}
Divide both sides by 109.
x=\frac{40\sqrt{109}}{109} x=-\frac{40\sqrt{109}}{109}
Take the square root of both sides of the equation.
16=x^{2}+\frac{\left(3x\right)^{2}}{10^{2}}
To raise \frac{3x}{10} to a power, raise both numerator and denominator to the power and then divide.
16=\frac{x^{2}\times 10^{2}}{10^{2}}+\frac{\left(3x\right)^{2}}{10^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{10^{2}}{10^{2}}.
16=\frac{x^{2}\times 10^{2}+\left(3x\right)^{2}}{10^{2}}
Since \frac{x^{2}\times 10^{2}}{10^{2}} and \frac{\left(3x\right)^{2}}{10^{2}} have the same denominator, add them by adding their numerators.
16=\frac{100x^{2}+\left(3x\right)^{2}}{10^{2}}
Do the multiplications in x^{2}\times 10^{2}+\left(3x\right)^{2}.
16=\frac{109x^{2}}{10^{2}}
Combine like terms in 100x^{2}+\left(3x\right)^{2}.
16=\frac{109x^{2}}{100}
Calculate 10 to the power of 2 and get 100.
\frac{109x^{2}}{100}=16
Swap sides so that all variable terms are on the left hand side.
\frac{109x^{2}}{100}-16=0
Subtract 16 from both sides.
109x^{2}-1600=0
Multiply both sides of the equation by 100.
x=\frac{0±\sqrt{0^{2}-4\times 109\left(-1600\right)}}{2\times 109}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 109 for a, 0 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 109\left(-1600\right)}}{2\times 109}
Square 0.
x=\frac{0±\sqrt{-436\left(-1600\right)}}{2\times 109}
Multiply -4 times 109.
x=\frac{0±\sqrt{697600}}{2\times 109}
Multiply -436 times -1600.
x=\frac{0±80\sqrt{109}}{2\times 109}
Take the square root of 697600.
x=\frac{0±80\sqrt{109}}{218}
Multiply 2 times 109.
x=\frac{40\sqrt{109}}{109}
Now solve the equation x=\frac{0±80\sqrt{109}}{218} when ± is plus.
x=-\frac{40\sqrt{109}}{109}
Now solve the equation x=\frac{0±80\sqrt{109}}{218} when ± is minus.
x=\frac{40\sqrt{109}}{109} x=-\frac{40\sqrt{109}}{109}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}