Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4+y^{2}-8y=0
Subtract 12 from 16 to get 4.
y^{2}-8y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 4}}{2}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-16}}{2}
Multiply -4 times 4.
y=\frac{-\left(-8\right)±\sqrt{48}}{2}
Add 64 to -16.
y=\frac{-\left(-8\right)±4\sqrt{3}}{2}
Take the square root of 48.
y=\frac{8±4\sqrt{3}}{2}
The opposite of -8 is 8.
y=\frac{4\sqrt{3}+8}{2}
Now solve the equation y=\frac{8±4\sqrt{3}}{2} when ± is plus. Add 8 to 4\sqrt{3}.
y=2\sqrt{3}+4
Divide 8+4\sqrt{3} by 2.
y=\frac{8-4\sqrt{3}}{2}
Now solve the equation y=\frac{8±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from 8.
y=4-2\sqrt{3}
Divide 8-4\sqrt{3} by 2.
y=2\sqrt{3}+4 y=4-2\sqrt{3}
The equation is now solved.
4+y^{2}-8y=0
Subtract 12 from 16 to get 4.
y^{2}-8y=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
y^{2}-8y+\left(-4\right)^{2}=-4+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-8y+16=-4+16
Square -4.
y^{2}-8y+16=12
Add -4 to 16.
\left(y-4\right)^{2}=12
Factor y^{2}-8y+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-4\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
y-4=2\sqrt{3} y-4=-2\sqrt{3}
Simplify.
y=2\sqrt{3}+4 y=4-2\sqrt{3}
Add 4 to both sides of the equation.