Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+6x+16
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=6 ab=-16=-16
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,16 -2,8 -4,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -16.
-1+16=15 -2+8=6 -4+4=0
Calculate the sum for each pair.
a=8 b=-2
The solution is the pair that gives sum 6.
\left(-x^{2}+8x\right)+\left(-2x+16\right)
Rewrite -x^{2}+6x+16 as \left(-x^{2}+8x\right)+\left(-2x+16\right).
-x\left(x-8\right)-2\left(x-8\right)
Factor out -x in the first and -2 in the second group.
\left(x-8\right)\left(-x-2\right)
Factor out common term x-8 by using distributive property.
-x^{2}+6x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36+64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{-6±\sqrt{100}}{2\left(-1\right)}
Add 36 to 64.
x=\frac{-6±10}{2\left(-1\right)}
Take the square root of 100.
x=\frac{-6±10}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-6±10}{-2} when ± is plus. Add -6 to 10.
x=-2
Divide 4 by -2.
x=-\frac{16}{-2}
Now solve the equation x=\frac{-6±10}{-2} when ± is minus. Subtract 10 from -6.
x=8
Divide -16 by -2.
-x^{2}+6x+16=-\left(x-\left(-2\right)\right)\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 8 for x_{2}.
-x^{2}+6x+16=-\left(x+2\right)\left(x-8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.