Solve for b
b=41-5x
Solve for x
x=\frac{41-b}{5}
Graph
Share
Copied to clipboard
15x-3+3b=120
Add 105 and 15 to get 120.
-3+3b=120-15x
Subtract 15x from both sides.
3b=120-15x+3
Add 3 to both sides.
3b=123-15x
Add 120 and 3 to get 123.
\frac{3b}{3}=\frac{123-15x}{3}
Divide both sides by 3.
b=\frac{123-15x}{3}
Dividing by 3 undoes the multiplication by 3.
b=41-5x
Divide 123-15x by 3.
15x-3+3b=120
Add 105 and 15 to get 120.
15x+3b=120+3
Add 3 to both sides.
15x+3b=123
Add 120 and 3 to get 123.
15x=123-3b
Subtract 3b from both sides.
\frac{15x}{15}=\frac{123-3b}{15}
Divide both sides by 15.
x=\frac{123-3b}{15}
Dividing by 15 undoes the multiplication by 15.
x=\frac{41-b}{5}
Divide 123-3b by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}