Solve for x
x\leq \frac{627}{35}
Graph
Share
Copied to clipboard
15x+600-5x\leq 13.5+7.5\left(120-x\right)
Use the distributive property to multiply 5 by 120-x.
10x+600\leq 13.5+7.5\left(120-x\right)
Combine 15x and -5x to get 10x.
10x+600\leq 13.5+900-7.5x
Use the distributive property to multiply 7.5 by 120-x.
10x+600\leq 913.5-7.5x
Add 13.5 and 900 to get 913.5.
10x+600+7.5x\leq 913.5
Add 7.5x to both sides.
17.5x+600\leq 913.5
Combine 10x and 7.5x to get 17.5x.
17.5x\leq 913.5-600
Subtract 600 from both sides.
17.5x\leq 313.5
Subtract 600 from 913.5 to get 313.5.
x\leq \frac{313.5}{17.5}
Divide both sides by 17.5. Since 17.5 is positive, the inequality direction remains the same.
x\leq \frac{3135}{175}
Expand \frac{313.5}{17.5} by multiplying both numerator and the denominator by 10.
x\leq \frac{627}{35}
Reduce the fraction \frac{3135}{175} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}