Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(5c-3c^{2}\right)
Factor out 3.
c\left(5-3c\right)
Consider 5c-3c^{2}. Factor out c.
3c\left(-3c+5\right)
Rewrite the complete factored expression.
-9c^{2}+15c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-15±\sqrt{15^{2}}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-15±15}{2\left(-9\right)}
Take the square root of 15^{2}.
c=\frac{-15±15}{-18}
Multiply 2 times -9.
c=\frac{0}{-18}
Now solve the equation c=\frac{-15±15}{-18} when ± is plus. Add -15 to 15.
c=0
Divide 0 by -18.
c=-\frac{30}{-18}
Now solve the equation c=\frac{-15±15}{-18} when ± is minus. Subtract 15 from -15.
c=\frac{5}{3}
Reduce the fraction \frac{-30}{-18} to lowest terms by extracting and canceling out 6.
-9c^{2}+15c=-9c\left(c-\frac{5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{5}{3} for x_{2}.
-9c^{2}+15c=-9c\times \frac{-3c+5}{-3}
Subtract \frac{5}{3} from c by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-9c^{2}+15c=3c\left(-3c+5\right)
Cancel out 3, the greatest common factor in -9 and -3.