Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{159.5}{100}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Divide both sides by 100.
\frac{1595}{1000}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Expand \frac{159.5}{100} by multiplying both numerator and the denominator by 10.
\frac{319}{200}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Reduce the fraction \frac{1595}{1000} to lowest terms by extracting and canceling out 5.
\frac{319}{200}=1+3.908\times \frac{1}{1000}t-6-5.802\times 10^{-1}t^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{319}{200}=1+\frac{977}{250000}t-6-5.802\times 10^{-1}t^{2}
Multiply 3.908 and \frac{1}{1000} to get \frac{977}{250000}.
\frac{319}{200}=-5+\frac{977}{250000}t-5.802\times 10^{-1}t^{2}
Subtract 6 from 1 to get -5.
\frac{319}{200}=-5+\frac{977}{250000}t-5.802\times \frac{1}{10}t^{2}
Calculate 10 to the power of -1 and get \frac{1}{10}.
\frac{319}{200}=-5+\frac{977}{250000}t-\frac{2901}{5000}t^{2}
Multiply 5.802 and \frac{1}{10} to get \frac{2901}{5000}.
-5+\frac{977}{250000}t-\frac{2901}{5000}t^{2}=\frac{319}{200}
Swap sides so that all variable terms are on the left hand side.
-5+\frac{977}{250000}t-\frac{2901}{5000}t^{2}-\frac{319}{200}=0
Subtract \frac{319}{200} from both sides.
-\frac{1319}{200}+\frac{977}{250000}t-\frac{2901}{5000}t^{2}=0
Subtract \frac{319}{200} from -5 to get -\frac{1319}{200}.
-\frac{2901}{5000}t^{2}+\frac{977}{250000}t-\frac{1319}{200}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\frac{977}{250000}±\sqrt{\left(\frac{977}{250000}\right)^{2}-4\left(-\frac{2901}{5000}\right)\left(-\frac{1319}{200}\right)}}{2\left(-\frac{2901}{5000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2901}{5000} for a, \frac{977}{250000} for b, and -\frac{1319}{200} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{977}{250000}±\sqrt{\frac{954529}{62500000000}-4\left(-\frac{2901}{5000}\right)\left(-\frac{1319}{200}\right)}}{2\left(-\frac{2901}{5000}\right)}
Square \frac{977}{250000} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\frac{977}{250000}±\sqrt{\frac{954529}{62500000000}+\frac{2901}{1250}\left(-\frac{1319}{200}\right)}}{2\left(-\frac{2901}{5000}\right)}
Multiply -4 times -\frac{2901}{5000}.
t=\frac{-\frac{977}{250000}±\sqrt{\frac{954529}{62500000000}-\frac{3826419}{250000}}}{2\left(-\frac{2901}{5000}\right)}
Multiply \frac{2901}{1250} times -\frac{1319}{200} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-\frac{977}{250000}±\sqrt{-\frac{956603795471}{62500000000}}}{2\left(-\frac{2901}{5000}\right)}
Add \frac{954529}{62500000000} to -\frac{3826419}{250000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\frac{977}{250000}±\frac{\sqrt{956603795471}i}{250000}}{2\left(-\frac{2901}{5000}\right)}
Take the square root of -\frac{956603795471}{62500000000}.
t=\frac{-\frac{977}{250000}±\frac{\sqrt{956603795471}i}{250000}}{-\frac{2901}{2500}}
Multiply 2 times -\frac{2901}{5000}.
t=\frac{-977+\sqrt{956603795471}i}{-\frac{2901}{2500}\times 250000}
Now solve the equation t=\frac{-\frac{977}{250000}±\frac{\sqrt{956603795471}i}{250000}}{-\frac{2901}{2500}} when ± is plus. Add -\frac{977}{250000} to \frac{i\sqrt{956603795471}}{250000}.
t=\frac{-\sqrt{956603795471}i+977}{290100}
Divide \frac{-977+i\sqrt{956603795471}}{250000} by -\frac{2901}{2500} by multiplying \frac{-977+i\sqrt{956603795471}}{250000} by the reciprocal of -\frac{2901}{2500}.
t=\frac{-\sqrt{956603795471}i-977}{-\frac{2901}{2500}\times 250000}
Now solve the equation t=\frac{-\frac{977}{250000}±\frac{\sqrt{956603795471}i}{250000}}{-\frac{2901}{2500}} when ± is minus. Subtract \frac{i\sqrt{956603795471}}{250000} from -\frac{977}{250000}.
t=\frac{977+\sqrt{956603795471}i}{290100}
Divide \frac{-977-i\sqrt{956603795471}}{250000} by -\frac{2901}{2500} by multiplying \frac{-977-i\sqrt{956603795471}}{250000} by the reciprocal of -\frac{2901}{2500}.
t=\frac{-\sqrt{956603795471}i+977}{290100} t=\frac{977+\sqrt{956603795471}i}{290100}
The equation is now solved.
\frac{159.5}{100}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Divide both sides by 100.
\frac{1595}{1000}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Expand \frac{159.5}{100} by multiplying both numerator and the denominator by 10.
\frac{319}{200}=1+3.908\times 10^{-3}t-6-5.802\times 10^{-1}t^{2}
Reduce the fraction \frac{1595}{1000} to lowest terms by extracting and canceling out 5.
\frac{319}{200}=1+3.908\times \frac{1}{1000}t-6-5.802\times 10^{-1}t^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{319}{200}=1+\frac{977}{250000}t-6-5.802\times 10^{-1}t^{2}
Multiply 3.908 and \frac{1}{1000} to get \frac{977}{250000}.
\frac{319}{200}=-5+\frac{977}{250000}t-5.802\times 10^{-1}t^{2}
Subtract 6 from 1 to get -5.
\frac{319}{200}=-5+\frac{977}{250000}t-5.802\times \frac{1}{10}t^{2}
Calculate 10 to the power of -1 and get \frac{1}{10}.
\frac{319}{200}=-5+\frac{977}{250000}t-\frac{2901}{5000}t^{2}
Multiply 5.802 and \frac{1}{10} to get \frac{2901}{5000}.
-5+\frac{977}{250000}t-\frac{2901}{5000}t^{2}=\frac{319}{200}
Swap sides so that all variable terms are on the left hand side.
\frac{977}{250000}t-\frac{2901}{5000}t^{2}=\frac{319}{200}+5
Add 5 to both sides.
\frac{977}{250000}t-\frac{2901}{5000}t^{2}=\frac{1319}{200}
Add \frac{319}{200} and 5 to get \frac{1319}{200}.
-\frac{2901}{5000}t^{2}+\frac{977}{250000}t=\frac{1319}{200}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{2901}{5000}t^{2}+\frac{977}{250000}t}{-\frac{2901}{5000}}=\frac{\frac{1319}{200}}{-\frac{2901}{5000}}
Divide both sides of the equation by -\frac{2901}{5000}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{\frac{977}{250000}}{-\frac{2901}{5000}}t=\frac{\frac{1319}{200}}{-\frac{2901}{5000}}
Dividing by -\frac{2901}{5000} undoes the multiplication by -\frac{2901}{5000}.
t^{2}-\frac{977}{145050}t=\frac{\frac{1319}{200}}{-\frac{2901}{5000}}
Divide \frac{977}{250000} by -\frac{2901}{5000} by multiplying \frac{977}{250000} by the reciprocal of -\frac{2901}{5000}.
t^{2}-\frac{977}{145050}t=-\frac{32975}{2901}
Divide \frac{1319}{200} by -\frac{2901}{5000} by multiplying \frac{1319}{200} by the reciprocal of -\frac{2901}{5000}.
t^{2}-\frac{977}{145050}t+\left(-\frac{977}{290100}\right)^{2}=-\frac{32975}{2901}+\left(-\frac{977}{290100}\right)^{2}
Divide -\frac{977}{145050}, the coefficient of the x term, by 2 to get -\frac{977}{290100}. Then add the square of -\frac{977}{290100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{977}{145050}t+\frac{954529}{84158010000}=-\frac{32975}{2901}+\frac{954529}{84158010000}
Square -\frac{977}{290100} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{977}{145050}t+\frac{954529}{84158010000}=-\frac{956603795471}{84158010000}
Add -\frac{32975}{2901} to \frac{954529}{84158010000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{977}{290100}\right)^{2}=-\frac{956603795471}{84158010000}
Factor t^{2}-\frac{977}{145050}t+\frac{954529}{84158010000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{977}{290100}\right)^{2}}=\sqrt{-\frac{956603795471}{84158010000}}
Take the square root of both sides of the equation.
t-\frac{977}{290100}=\frac{\sqrt{956603795471}i}{290100} t-\frac{977}{290100}=-\frac{\sqrt{956603795471}i}{290100}
Simplify.
t=\frac{977+\sqrt{956603795471}i}{290100} t=\frac{-\sqrt{956603795471}i+977}{290100}
Add \frac{977}{290100} to both sides of the equation.