Evaluate
\frac{159}{50}=3.18
Factor
\frac{3 \cdot 53}{2 \cdot 5 ^ {2}} = 3\frac{9}{50} = 3.18
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)159}\\\end{array}
Use the 1^{st} digit 1 from dividend 159
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)159}\\\end{array}
Since 1 is less than 50, use the next digit 5 from dividend 159 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)159}\\\end{array}
Use the 2^{nd} digit 5 from dividend 159
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)159}\\\end{array}
Since 15 is less than 50, use the next digit 9 from dividend 159 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)159}\\\end{array}
Use the 3^{rd} digit 9 from dividend 159
\begin{array}{l}\phantom{50)}003\phantom{6}\\50\overline{)159}\\\phantom{50)}\underline{\phantom{}150\phantom{}}\\\phantom{50)99}9\\\end{array}
Find closest multiple of 50 to 159. We see that 3 \times 50 = 150 is the nearest. Now subtract 150 from 159 to get reminder 9. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }9
Since 9 is less than 50, stop the division. The reminder is 9. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}