158 \%
Evaluate
\frac{79}{50}=1.58
Factor
\frac{79}{2 \cdot 5 ^ {2}} = 1\frac{29}{50} = 1.58
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)158}\\\end{array}
Use the 1^{st} digit 1 from dividend 158
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)158}\\\end{array}
Since 1 is less than 100, use the next digit 5 from dividend 158 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)158}\\\end{array}
Use the 2^{nd} digit 5 from dividend 158
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)158}\\\end{array}
Since 15 is less than 100, use the next digit 8 from dividend 158 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)158}\\\end{array}
Use the 3^{rd} digit 8 from dividend 158
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)158}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)9}58\\\end{array}
Find closest multiple of 100 to 158. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 158 to get reminder 58. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }58
Since 58 is less than 100, stop the division. The reminder is 58. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}