Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 15676 with 2. Write the result 31352 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\phantom{\times99}141084\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 15676 with 9. Write the result 141084 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\phantom{\times99}141084\phantom{9}\\\phantom{\times9}109732\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 15676 with 7. Write the result 109732 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\phantom{\times99}141084\phantom{9}\\\phantom{\times9}109732\phantom{99}\\\phantom{\times9}94056\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 15676 with 6. Write the result 94056 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\phantom{\times99}141084\phantom{9}\\\phantom{\times9}109732\phantom{99}\\\phantom{\times9}94056\phantom{999}\\\underline{\phantom{\times}15676\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 15676 with 1. Write the result 15676 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}15676\\\underline{\times\phantom{9999}16792}\\\phantom{\times9999}31352\\\phantom{\times99}141084\phantom{9}\\\phantom{\times9}109732\phantom{99}\\\phantom{\times9}94056\phantom{999}\\\underline{\phantom{\times}15676\phantom{9999}}\\\phantom{\times}263231392\end{array}
Now add the intermediate results to get final answer.