Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{100}{15625}
Divide both sides by 15625.
x^{2}=\frac{4}{625}
Reduce the fraction \frac{100}{15625} to lowest terms by extracting and canceling out 25.
x^{2}-\frac{4}{625}=0
Subtract \frac{4}{625} from both sides.
625x^{2}-4=0
Multiply both sides by 625.
\left(25x-2\right)\left(25x+2\right)=0
Consider 625x^{2}-4. Rewrite 625x^{2}-4 as \left(25x\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{25} x=-\frac{2}{25}
To find equation solutions, solve 25x-2=0 and 25x+2=0.
x^{2}=\frac{100}{15625}
Divide both sides by 15625.
x^{2}=\frac{4}{625}
Reduce the fraction \frac{100}{15625} to lowest terms by extracting and canceling out 25.
x=\frac{2}{25} x=-\frac{2}{25}
Take the square root of both sides of the equation.
x^{2}=\frac{100}{15625}
Divide both sides by 15625.
x^{2}=\frac{4}{625}
Reduce the fraction \frac{100}{15625} to lowest terms by extracting and canceling out 25.
x^{2}-\frac{4}{625}=0
Subtract \frac{4}{625} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{625}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{4}{625} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4}{625}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{16}{625}}}{2}
Multiply -4 times -\frac{4}{625}.
x=\frac{0±\frac{4}{25}}{2}
Take the square root of \frac{16}{625}.
x=\frac{2}{25}
Now solve the equation x=\frac{0±\frac{4}{25}}{2} when ± is plus.
x=-\frac{2}{25}
Now solve the equation x=\frac{0±\frac{4}{25}}{2} when ± is minus.
x=\frac{2}{25} x=-\frac{2}{25}
The equation is now solved.