Evaluate
\frac{156000}{43}\approx 3627.906976744
Factor
\frac{2 ^ {5} \cdot 3 \cdot 5 ^ {3} \cdot 13}{43} = 3627\frac{39}{43} = 3627.906976744186
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)156000}\\\end{array}
Use the 1^{st} digit 1 from dividend 156000
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)156000}\\\end{array}
Since 1 is less than 43, use the next digit 5 from dividend 156000 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)156000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 156000
\begin{array}{l}\phantom{43)}00\phantom{4}\\43\overline{)156000}\\\end{array}
Since 15 is less than 43, use the next digit 6 from dividend 156000 and add 0 to the quotient
\begin{array}{l}\phantom{43)}00\phantom{5}\\43\overline{)156000}\\\end{array}
Use the 3^{rd} digit 6 from dividend 156000
\begin{array}{l}\phantom{43)}003\phantom{6}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}27\\\end{array}
Find closest multiple of 43 to 156. We see that 3 \times 43 = 129 is the nearest. Now subtract 129 from 156 to get reminder 27. Add 3 to quotient.
\begin{array}{l}\phantom{43)}003\phantom{7}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\end{array}
Use the 4^{th} digit 0 from dividend 156000
\begin{array}{l}\phantom{43)}0036\phantom{8}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\phantom{43)}\underline{\phantom{9}258\phantom{99}}\\\phantom{43)99}12\\\end{array}
Find closest multiple of 43 to 270. We see that 6 \times 43 = 258 is the nearest. Now subtract 258 from 270 to get reminder 12. Add 6 to quotient.
\begin{array}{l}\phantom{43)}0036\phantom{9}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\phantom{43)}\underline{\phantom{9}258\phantom{99}}\\\phantom{43)99}120\\\end{array}
Use the 5^{th} digit 0 from dividend 156000
\begin{array}{l}\phantom{43)}00362\phantom{10}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\phantom{43)}\underline{\phantom{9}258\phantom{99}}\\\phantom{43)99}120\\\phantom{43)}\underline{\phantom{999}86\phantom{9}}\\\phantom{43)999}34\\\end{array}
Find closest multiple of 43 to 120. We see that 2 \times 43 = 86 is the nearest. Now subtract 86 from 120 to get reminder 34. Add 2 to quotient.
\begin{array}{l}\phantom{43)}00362\phantom{11}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\phantom{43)}\underline{\phantom{9}258\phantom{99}}\\\phantom{43)99}120\\\phantom{43)}\underline{\phantom{999}86\phantom{9}}\\\phantom{43)999}340\\\end{array}
Use the 6^{th} digit 0 from dividend 156000
\begin{array}{l}\phantom{43)}003627\phantom{12}\\43\overline{)156000}\\\phantom{43)}\underline{\phantom{}129\phantom{999}}\\\phantom{43)9}270\\\phantom{43)}\underline{\phantom{9}258\phantom{99}}\\\phantom{43)99}120\\\phantom{43)}\underline{\phantom{999}86\phantom{9}}\\\phantom{43)999}340\\\phantom{43)}\underline{\phantom{999}301\phantom{}}\\\phantom{43)9999}39\\\end{array}
Find closest multiple of 43 to 340. We see that 7 \times 43 = 301 is the nearest. Now subtract 301 from 340 to get reminder 39. Add 7 to quotient.
\text{Quotient: }3627 \text{Reminder: }39
Since 39 is less than 43, stop the division. The reminder is 39. The topmost line 003627 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3627.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}