Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+186x=1560
Swap sides so that all variable terms are on the left hand side.
-x^{2}+186x-1560=0
Subtract 1560 from both sides.
x=\frac{-186±\sqrt{186^{2}-4\left(-1\right)\left(-1560\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 186 for b, and -1560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-186±\sqrt{34596-4\left(-1\right)\left(-1560\right)}}{2\left(-1\right)}
Square 186.
x=\frac{-186±\sqrt{34596+4\left(-1560\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-186±\sqrt{34596-6240}}{2\left(-1\right)}
Multiply 4 times -1560.
x=\frac{-186±\sqrt{28356}}{2\left(-1\right)}
Add 34596 to -6240.
x=\frac{-186±2\sqrt{7089}}{2\left(-1\right)}
Take the square root of 28356.
x=\frac{-186±2\sqrt{7089}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7089}-186}{-2}
Now solve the equation x=\frac{-186±2\sqrt{7089}}{-2} when ± is plus. Add -186 to 2\sqrt{7089}.
x=93-\sqrt{7089}
Divide -186+2\sqrt{7089} by -2.
x=\frac{-2\sqrt{7089}-186}{-2}
Now solve the equation x=\frac{-186±2\sqrt{7089}}{-2} when ± is minus. Subtract 2\sqrt{7089} from -186.
x=\sqrt{7089}+93
Divide -186-2\sqrt{7089} by -2.
x=93-\sqrt{7089} x=\sqrt{7089}+93
The equation is now solved.
-x^{2}+186x=1560
Swap sides so that all variable terms are on the left hand side.
\frac{-x^{2}+186x}{-1}=\frac{1560}{-1}
Divide both sides by -1.
x^{2}+\frac{186}{-1}x=\frac{1560}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-186x=\frac{1560}{-1}
Divide 186 by -1.
x^{2}-186x=-1560
Divide 1560 by -1.
x^{2}-186x+\left(-93\right)^{2}=-1560+\left(-93\right)^{2}
Divide -186, the coefficient of the x term, by 2 to get -93. Then add the square of -93 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-186x+8649=-1560+8649
Square -93.
x^{2}-186x+8649=7089
Add -1560 to 8649.
\left(x-93\right)^{2}=7089
Factor x^{2}-186x+8649. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-93\right)^{2}}=\sqrt{7089}
Take the square root of both sides of the equation.
x-93=\sqrt{7089} x-93=-\sqrt{7089}
Simplify.
x=\sqrt{7089}+93 x=93-\sqrt{7089}
Add 93 to both sides of the equation.