Evaluate
\frac{26}{3}\approx 8.666666667
Factor
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8.666666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)156}\\\end{array}
Use the 1^{st} digit 1 from dividend 156
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)156}\\\end{array}
Since 1 is less than 18, use the next digit 5 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)156}\\\end{array}
Use the 2^{nd} digit 5 from dividend 156
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)156}\\\end{array}
Since 15 is less than 18, use the next digit 6 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)156}\\\end{array}
Use the 3^{rd} digit 6 from dividend 156
\begin{array}{l}\phantom{18)}008\phantom{6}\\18\overline{)156}\\\phantom{18)}\underline{\phantom{}144\phantom{}}\\\phantom{18)9}12\\\end{array}
Find closest multiple of 18 to 156. We see that 8 \times 18 = 144 is the nearest. Now subtract 144 from 156 to get reminder 12. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }12
Since 12 is less than 18, stop the division. The reminder is 12. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}