Evaluate
\frac{39}{20}=1.95
Factor
\frac{3 \cdot 13}{2 ^ {2} \cdot 5} = 1\frac{19}{20} = 1.95
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)156}\\\end{array}
Use the 1^{st} digit 1 from dividend 156
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)156}\\\end{array}
Since 1 is less than 80, use the next digit 5 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)156}\\\end{array}
Use the 2^{nd} digit 5 from dividend 156
\begin{array}{l}\phantom{80)}00\phantom{4}\\80\overline{)156}\\\end{array}
Since 15 is less than 80, use the next digit 6 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{80)}00\phantom{5}\\80\overline{)156}\\\end{array}
Use the 3^{rd} digit 6 from dividend 156
\begin{array}{l}\phantom{80)}001\phantom{6}\\80\overline{)156}\\\phantom{80)}\underline{\phantom{9}80\phantom{}}\\\phantom{80)9}76\\\end{array}
Find closest multiple of 80 to 156. We see that 1 \times 80 = 80 is the nearest. Now subtract 80 from 156 to get reminder 76. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }76
Since 76 is less than 80, stop the division. The reminder is 76. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}