Evaluate
\frac{12}{11}\approx 1.090909091
Factor
\frac{2 ^ {2} \cdot 3}{11} = 1\frac{1}{11} = 1.0909090909090908
Share
Copied to clipboard
\begin{array}{l}\phantom{143)}\phantom{1}\\143\overline{)156}\\\end{array}
Use the 1^{st} digit 1 from dividend 156
\begin{array}{l}\phantom{143)}0\phantom{2}\\143\overline{)156}\\\end{array}
Since 1 is less than 143, use the next digit 5 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{143)}0\phantom{3}\\143\overline{)156}\\\end{array}
Use the 2^{nd} digit 5 from dividend 156
\begin{array}{l}\phantom{143)}00\phantom{4}\\143\overline{)156}\\\end{array}
Since 15 is less than 143, use the next digit 6 from dividend 156 and add 0 to the quotient
\begin{array}{l}\phantom{143)}00\phantom{5}\\143\overline{)156}\\\end{array}
Use the 3^{rd} digit 6 from dividend 156
\begin{array}{l}\phantom{143)}001\phantom{6}\\143\overline{)156}\\\phantom{143)}\underline{\phantom{}143\phantom{}}\\\phantom{143)9}13\\\end{array}
Find closest multiple of 143 to 156. We see that 1 \times 143 = 143 is the nearest. Now subtract 143 from 156 to get reminder 13. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }13
Since 13 is less than 143, stop the division. The reminder is 13. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}