Evaluate
\frac{3100}{3}\approx 1033.333333333
Factor
\frac{2 ^ {2} \cdot 5 ^ {2} \cdot 31}{3} = 1033\frac{1}{3} = 1033.3333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)15500}\\\end{array}
Use the 1^{st} digit 1 from dividend 15500
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)15500}\\\end{array}
Since 1 is less than 15, use the next digit 5 from dividend 15500 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)15500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15500
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}0\\\end{array}
Find closest multiple of 15 to 15. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 15 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}5\\\end{array}
Use the 3^{rd} digit 5 from dividend 15500
\begin{array}{l}\phantom{15)}010\phantom{6}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}5\\\end{array}
Since 5 is less than 15, use the next digit 0 from dividend 15500 and add 0 to the quotient
\begin{array}{l}\phantom{15)}010\phantom{7}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}50\\\end{array}
Use the 4^{th} digit 0 from dividend 15500
\begin{array}{l}\phantom{15)}0103\phantom{8}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}50\\\phantom{15)}\underline{\phantom{99}45\phantom{9}}\\\phantom{15)999}5\\\end{array}
Find closest multiple of 15 to 50. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 50 to get reminder 5. Add 3 to quotient.
\begin{array}{l}\phantom{15)}0103\phantom{9}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}50\\\phantom{15)}\underline{\phantom{99}45\phantom{9}}\\\phantom{15)999}50\\\end{array}
Use the 5^{th} digit 0 from dividend 15500
\begin{array}{l}\phantom{15)}01033\phantom{10}\\15\overline{)15500}\\\phantom{15)}\underline{\phantom{}15\phantom{999}}\\\phantom{15)99}50\\\phantom{15)}\underline{\phantom{99}45\phantom{9}}\\\phantom{15)999}50\\\phantom{15)}\underline{\phantom{999}45\phantom{}}\\\phantom{15)9999}5\\\end{array}
Find closest multiple of 15 to 50. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 50 to get reminder 5. Add 3 to quotient.
\text{Quotient: }1033 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 01033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1033.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}