Evaluate
\frac{155}{39}\approx 3.974358974
Factor
\frac{5 \cdot 31}{3 \cdot 13} = 3\frac{38}{39} = 3.9743589743589745
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)155}\\\end{array}
Use the 1^{st} digit 1 from dividend 155
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)155}\\\end{array}
Since 1 is less than 39, use the next digit 5 from dividend 155 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)155}\\\end{array}
Use the 2^{nd} digit 5 from dividend 155
\begin{array}{l}\phantom{39)}00\phantom{4}\\39\overline{)155}\\\end{array}
Since 15 is less than 39, use the next digit 5 from dividend 155 and add 0 to the quotient
\begin{array}{l}\phantom{39)}00\phantom{5}\\39\overline{)155}\\\end{array}
Use the 3^{rd} digit 5 from dividend 155
\begin{array}{l}\phantom{39)}003\phantom{6}\\39\overline{)155}\\\phantom{39)}\underline{\phantom{}117\phantom{}}\\\phantom{39)9}38\\\end{array}
Find closest multiple of 39 to 155. We see that 3 \times 39 = 117 is the nearest. Now subtract 117 from 155 to get reminder 38. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }38
Since 38 is less than 39, stop the division. The reminder is 38. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}