Evaluate
\frac{155}{12}\approx 12.916666667
Factor
\frac{5 \cdot 31}{2 ^ {2} \cdot 3} = 12\frac{11}{12} = 12.916666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)155}\\\end{array}
Use the 1^{st} digit 1 from dividend 155
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)155}\\\end{array}
Since 1 is less than 12, use the next digit 5 from dividend 155 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)155}\\\end{array}
Use the 2^{nd} digit 5 from dividend 155
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)155}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}3\\\end{array}
Find closest multiple of 12 to 15. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 15 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)155}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}35\\\end{array}
Use the 3^{rd} digit 5 from dividend 155
\begin{array}{l}\phantom{12)}012\phantom{6}\\12\overline{)155}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}35\\\phantom{12)}\underline{\phantom{9}24\phantom{}}\\\phantom{12)9}11\\\end{array}
Find closest multiple of 12 to 35. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 35 to get reminder 11. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }11
Since 11 is less than 12, stop the division. The reminder is 11. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}