Evaluate
\frac{51239}{24}\approx 2134.958333333
Factor
\frac{51239}{2 ^ {3} \cdot 3} = 2134\frac{23}{24} = 2134.9583333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)153717}\\\end{array}
Use the 1^{st} digit 1 from dividend 153717
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)153717}\\\end{array}
Since 1 is less than 72, use the next digit 5 from dividend 153717 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)153717}\\\end{array}
Use the 2^{nd} digit 5 from dividend 153717
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)153717}\\\end{array}
Since 15 is less than 72, use the next digit 3 from dividend 153717 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)153717}\\\end{array}
Use the 3^{rd} digit 3 from dividend 153717
\begin{array}{l}\phantom{72)}002\phantom{6}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}9\\\end{array}
Find closest multiple of 72 to 153. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 153 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{72)}002\phantom{7}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\end{array}
Use the 4^{th} digit 7 from dividend 153717
\begin{array}{l}\phantom{72)}0021\phantom{8}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}25\\\end{array}
Find closest multiple of 72 to 97. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 97 to get reminder 25. Add 1 to quotient.
\begin{array}{l}\phantom{72)}0021\phantom{9}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\end{array}
Use the 5^{th} digit 1 from dividend 153717
\begin{array}{l}\phantom{72)}00213\phantom{10}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}35\\\end{array}
Find closest multiple of 72 to 251. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 251 to get reminder 35. Add 3 to quotient.
\begin{array}{l}\phantom{72)}00213\phantom{11}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}357\\\end{array}
Use the 6^{th} digit 7 from dividend 153717
\begin{array}{l}\phantom{72)}002134\phantom{12}\\72\overline{)153717}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}357\\\phantom{72)}\underline{\phantom{999}288\phantom{}}\\\phantom{72)9999}69\\\end{array}
Find closest multiple of 72 to 357. We see that 4 \times 72 = 288 is the nearest. Now subtract 288 from 357 to get reminder 69. Add 4 to quotient.
\text{Quotient: }2134 \text{Reminder: }69
Since 69 is less than 72, stop the division. The reminder is 69. The topmost line 002134 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2134.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}