Evaluate
\frac{153713}{72}\approx 2134.902777778
Factor
\frac{7 ^ {2} \cdot 3137}{2 ^ {3} \cdot 3 ^ {2}} = 2134\frac{65}{72} = 2134.902777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)153713}\\\end{array}
Use the 1^{st} digit 1 from dividend 153713
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)153713}\\\end{array}
Since 1 is less than 72, use the next digit 5 from dividend 153713 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)153713}\\\end{array}
Use the 2^{nd} digit 5 from dividend 153713
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)153713}\\\end{array}
Since 15 is less than 72, use the next digit 3 from dividend 153713 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)153713}\\\end{array}
Use the 3^{rd} digit 3 from dividend 153713
\begin{array}{l}\phantom{72)}002\phantom{6}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}9\\\end{array}
Find closest multiple of 72 to 153. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 153 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{72)}002\phantom{7}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\end{array}
Use the 4^{th} digit 7 from dividend 153713
\begin{array}{l}\phantom{72)}0021\phantom{8}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}25\\\end{array}
Find closest multiple of 72 to 97. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 97 to get reminder 25. Add 1 to quotient.
\begin{array}{l}\phantom{72)}0021\phantom{9}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\end{array}
Use the 5^{th} digit 1 from dividend 153713
\begin{array}{l}\phantom{72)}00213\phantom{10}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}35\\\end{array}
Find closest multiple of 72 to 251. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 251 to get reminder 35. Add 3 to quotient.
\begin{array}{l}\phantom{72)}00213\phantom{11}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}353\\\end{array}
Use the 6^{th} digit 3 from dividend 153713
\begin{array}{l}\phantom{72)}002134\phantom{12}\\72\overline{)153713}\\\phantom{72)}\underline{\phantom{}144\phantom{999}}\\\phantom{72)99}97\\\phantom{72)}\underline{\phantom{99}72\phantom{99}}\\\phantom{72)99}251\\\phantom{72)}\underline{\phantom{99}216\phantom{9}}\\\phantom{72)999}353\\\phantom{72)}\underline{\phantom{999}288\phantom{}}\\\phantom{72)9999}65\\\end{array}
Find closest multiple of 72 to 353. We see that 4 \times 72 = 288 is the nearest. Now subtract 288 from 353 to get reminder 65. Add 4 to quotient.
\text{Quotient: }2134 \text{Reminder: }65
Since 65 is less than 72, stop the division. The reminder is 65. The topmost line 002134 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2134.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}