Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{256)}\phantom{1}\\256\overline{)1536}\\\end{array}
Use the 1^{st} digit 1 from dividend 1536
\begin{array}{l}\phantom{256)}0\phantom{2}\\256\overline{)1536}\\\end{array}
Since 1 is less than 256, use the next digit 5 from dividend 1536 and add 0 to the quotient
\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)1536}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1536
\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)1536}\\\end{array}
Since 15 is less than 256, use the next digit 3 from dividend 1536 and add 0 to the quotient
\begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)1536}\\\end{array}
Use the 3^{rd} digit 3 from dividend 1536
\begin{array}{l}\phantom{256)}000\phantom{6}\\256\overline{)1536}\\\end{array}
Since 153 is less than 256, use the next digit 6 from dividend 1536 and add 0 to the quotient
\begin{array}{l}\phantom{256)}000\phantom{7}\\256\overline{)1536}\\\end{array}
Use the 4^{th} digit 6 from dividend 1536
\begin{array}{l}\phantom{256)}0006\phantom{8}\\256\overline{)1536}\\\phantom{256)}\underline{\phantom{}1536\phantom{}}\\\phantom{256)9999}0\\\end{array}
Find closest multiple of 256 to 1536. We see that 6 \times 256 = 1536 is the nearest. Now subtract 1536 from 1536 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 256, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}