Evaluate
\frac{510}{83}\approx 6.144578313
Factor
\frac{2 \cdot 3 \cdot 5 \cdot 17}{83} = 6\frac{12}{83} = 6.144578313253012
Share
Copied to clipboard
\begin{array}{l}\phantom{249)}\phantom{1}\\249\overline{)1530}\\\end{array}
Use the 1^{st} digit 1 from dividend 1530
\begin{array}{l}\phantom{249)}0\phantom{2}\\249\overline{)1530}\\\end{array}
Since 1 is less than 249, use the next digit 5 from dividend 1530 and add 0 to the quotient
\begin{array}{l}\phantom{249)}0\phantom{3}\\249\overline{)1530}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1530
\begin{array}{l}\phantom{249)}00\phantom{4}\\249\overline{)1530}\\\end{array}
Since 15 is less than 249, use the next digit 3 from dividend 1530 and add 0 to the quotient
\begin{array}{l}\phantom{249)}00\phantom{5}\\249\overline{)1530}\\\end{array}
Use the 3^{rd} digit 3 from dividend 1530
\begin{array}{l}\phantom{249)}000\phantom{6}\\249\overline{)1530}\\\end{array}
Since 153 is less than 249, use the next digit 0 from dividend 1530 and add 0 to the quotient
\begin{array}{l}\phantom{249)}000\phantom{7}\\249\overline{)1530}\\\end{array}
Use the 4^{th} digit 0 from dividend 1530
\begin{array}{l}\phantom{249)}0006\phantom{8}\\249\overline{)1530}\\\phantom{249)}\underline{\phantom{}1494\phantom{}}\\\phantom{249)99}36\\\end{array}
Find closest multiple of 249 to 1530. We see that 6 \times 249 = 1494 is the nearest. Now subtract 1494 from 1530 to get reminder 36. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }36
Since 36 is less than 249, stop the division. The reminder is 36. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}