Evaluate
\frac{15283}{60}\approx 254.716666667
Factor
\frac{17 \cdot 29 \cdot 31}{2 ^ {2} \cdot 3 \cdot 5} = 254\frac{43}{60} = 254.71666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)15283}\\\end{array}
Use the 1^{st} digit 1 from dividend 15283
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)15283}\\\end{array}
Since 1 is less than 60, use the next digit 5 from dividend 15283 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)15283}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15283
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)15283}\\\end{array}
Since 15 is less than 60, use the next digit 2 from dividend 15283 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)15283}\\\end{array}
Use the 3^{rd} digit 2 from dividend 15283
\begin{array}{l}\phantom{60)}002\phantom{6}\\60\overline{)15283}\\\phantom{60)}\underline{\phantom{}120\phantom{99}}\\\phantom{60)9}32\\\end{array}
Find closest multiple of 60 to 152. We see that 2 \times 60 = 120 is the nearest. Now subtract 120 from 152 to get reminder 32. Add 2 to quotient.
\begin{array}{l}\phantom{60)}002\phantom{7}\\60\overline{)15283}\\\phantom{60)}\underline{\phantom{}120\phantom{99}}\\\phantom{60)9}328\\\end{array}
Use the 4^{th} digit 8 from dividend 15283
\begin{array}{l}\phantom{60)}0025\phantom{8}\\60\overline{)15283}\\\phantom{60)}\underline{\phantom{}120\phantom{99}}\\\phantom{60)9}328\\\phantom{60)}\underline{\phantom{9}300\phantom{9}}\\\phantom{60)99}28\\\end{array}
Find closest multiple of 60 to 328. We see that 5 \times 60 = 300 is the nearest. Now subtract 300 from 328 to get reminder 28. Add 5 to quotient.
\begin{array}{l}\phantom{60)}0025\phantom{9}\\60\overline{)15283}\\\phantom{60)}\underline{\phantom{}120\phantom{99}}\\\phantom{60)9}328\\\phantom{60)}\underline{\phantom{9}300\phantom{9}}\\\phantom{60)99}283\\\end{array}
Use the 5^{th} digit 3 from dividend 15283
\begin{array}{l}\phantom{60)}00254\phantom{10}\\60\overline{)15283}\\\phantom{60)}\underline{\phantom{}120\phantom{99}}\\\phantom{60)9}328\\\phantom{60)}\underline{\phantom{9}300\phantom{9}}\\\phantom{60)99}283\\\phantom{60)}\underline{\phantom{99}240\phantom{}}\\\phantom{60)999}43\\\end{array}
Find closest multiple of 60 to 283. We see that 4 \times 60 = 240 is the nearest. Now subtract 240 from 283 to get reminder 43. Add 4 to quotient.
\text{Quotient: }254 \text{Reminder: }43
Since 43 is less than 60, stop the division. The reminder is 43. The topmost line 00254 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 254.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}