Evaluate
\frac{152}{23}\approx 6.608695652
Factor
\frac{2 ^ {3} \cdot 19}{23} = 6\frac{14}{23} = 6.608695652173913
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)152}\\\end{array}
Use the 1^{st} digit 1 from dividend 152
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)152}\\\end{array}
Since 1 is less than 23, use the next digit 5 from dividend 152 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)152}\\\end{array}
Use the 2^{nd} digit 5 from dividend 152
\begin{array}{l}\phantom{23)}00\phantom{4}\\23\overline{)152}\\\end{array}
Since 15 is less than 23, use the next digit 2 from dividend 152 and add 0 to the quotient
\begin{array}{l}\phantom{23)}00\phantom{5}\\23\overline{)152}\\\end{array}
Use the 3^{rd} digit 2 from dividend 152
\begin{array}{l}\phantom{23)}006\phantom{6}\\23\overline{)152}\\\phantom{23)}\underline{\phantom{}138\phantom{}}\\\phantom{23)9}14\\\end{array}
Find closest multiple of 23 to 152. We see that 6 \times 23 = 138 is the nearest. Now subtract 138 from 152 to get reminder 14. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }14
Since 14 is less than 23, stop the division. The reminder is 14. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}