Evaluate
\frac{1515}{398}\approx 3.806532663
Factor
\frac{3 \cdot 5 \cdot 101}{2 \cdot 199} = 3\frac{321}{398} = 3.806532663316583
Share
Copied to clipboard
\begin{array}{l}\phantom{398)}\phantom{1}\\398\overline{)1515}\\\end{array}
Use the 1^{st} digit 1 from dividend 1515
\begin{array}{l}\phantom{398)}0\phantom{2}\\398\overline{)1515}\\\end{array}
Since 1 is less than 398, use the next digit 5 from dividend 1515 and add 0 to the quotient
\begin{array}{l}\phantom{398)}0\phantom{3}\\398\overline{)1515}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1515
\begin{array}{l}\phantom{398)}00\phantom{4}\\398\overline{)1515}\\\end{array}
Since 15 is less than 398, use the next digit 1 from dividend 1515 and add 0 to the quotient
\begin{array}{l}\phantom{398)}00\phantom{5}\\398\overline{)1515}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1515
\begin{array}{l}\phantom{398)}000\phantom{6}\\398\overline{)1515}\\\end{array}
Since 151 is less than 398, use the next digit 5 from dividend 1515 and add 0 to the quotient
\begin{array}{l}\phantom{398)}000\phantom{7}\\398\overline{)1515}\\\end{array}
Use the 4^{th} digit 5 from dividend 1515
\begin{array}{l}\phantom{398)}0003\phantom{8}\\398\overline{)1515}\\\phantom{398)}\underline{\phantom{}1194\phantom{}}\\\phantom{398)9}321\\\end{array}
Find closest multiple of 398 to 1515. We see that 3 \times 398 = 1194 is the nearest. Now subtract 1194 from 1515 to get reminder 321. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }321
Since 321 is less than 398, stop the division. The reminder is 321. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}