Evaluate
\frac{151}{68}\approx 2.220588235
Factor
\frac{151}{2 ^ {2} \cdot 17} = 2\frac{15}{68} = 2.2205882352941178
Share
Copied to clipboard
\begin{array}{l}\phantom{680)}\phantom{1}\\680\overline{)1510}\\\end{array}
Use the 1^{st} digit 1 from dividend 1510
\begin{array}{l}\phantom{680)}0\phantom{2}\\680\overline{)1510}\\\end{array}
Since 1 is less than 680, use the next digit 5 from dividend 1510 and add 0 to the quotient
\begin{array}{l}\phantom{680)}0\phantom{3}\\680\overline{)1510}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1510
\begin{array}{l}\phantom{680)}00\phantom{4}\\680\overline{)1510}\\\end{array}
Since 15 is less than 680, use the next digit 1 from dividend 1510 and add 0 to the quotient
\begin{array}{l}\phantom{680)}00\phantom{5}\\680\overline{)1510}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1510
\begin{array}{l}\phantom{680)}000\phantom{6}\\680\overline{)1510}\\\end{array}
Since 151 is less than 680, use the next digit 0 from dividend 1510 and add 0 to the quotient
\begin{array}{l}\phantom{680)}000\phantom{7}\\680\overline{)1510}\\\end{array}
Use the 4^{th} digit 0 from dividend 1510
\begin{array}{l}\phantom{680)}0002\phantom{8}\\680\overline{)1510}\\\phantom{680)}\underline{\phantom{}1360\phantom{}}\\\phantom{680)9}150\\\end{array}
Find closest multiple of 680 to 1510. We see that 2 \times 680 = 1360 is the nearest. Now subtract 1360 from 1510 to get reminder 150. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }150
Since 150 is less than 680, stop the division. The reminder is 150. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}